
Paulius Micikevičius, NVIDIA

HotChips 2021, Tutorial: ML Performance



2

Outline

• Overview and input data categories

• Network for various data types

• Unstructured data

• Grid data

• Sequence data

• Graph data

• Summary



3

High Level View

• Neural Networks are composed of “layers”

• Data “flows” through the layers
• Fwd and bwd for training

• Fwd for inference

• Data: vectors/matrices

• Each layer:

• Consumes the inputs

• Performs some operation (may have it own params/weights)

• Produces the outputs

Layer 

1
Layer 

2
Layer 

3

Input
Output



4

Layer Compute Categories

• Dot-product based (will be referred to as MatMuls)

• Output element involves a dot-product

• Matrix multiplies, also known as: Linear, fully connected, projection, …

• Convolutions

• Reductions

• Output element involves reducing (accumulating) values over some dimension(s) of a tensor

• Examples: sum, norm (sum of squares), mean

• Most normalization (Batch Normalization, Layer Normalization, …) include this primitive

• Element-wise

• Output element depends on a corresponding element in input tensor(s)

• Non-linearities: ReLU, GeLU, Sigmoid, …

• Add (add two tensors point-wise), …



5

Network Input Data Categories

• Regular structure:

• 1D (sequences): text, audio, stock price over time, temperature over time, …

• 2D: images, …

• 3D: MRI data, …

• Irregular/unstructured:

• Graphs

• Point clouds

• Sets of attributes



6

Unstructured Data



7

Unstructured Data: Set of Attributes

• Input:

• a vector is formed from all the attributes

• Network:

• MLP: a sequence of fully connected layers

• Example application: recommenders

• Typical output:

• Scalar value: relevance, probability, …

• Vector: embedding vector, for finding similar items (proximity in vector space)



8

Two Types of Attributes for Input

• Numerical

• May undergo some normalization, become input vector elements

• Examples: connection bandwidth, weight, price, …

• Categorical

• Examples: user age group, movie ID, …

• Do not have a numerical meaning -> must be embedded to become vectors

• Embedding: table lookup using category ID

• Table values are learned

• Table per attribute (sometimes also known as feature)



9

User id: Stan Roberts (00000001)

Location: Cupertino (02)

Age group: (3)

Movie ID: Free Solo (1434298)

Device: Fire Stick 4K (173)



10

Multi-Hot Features

• Typically a history of N items

• General operation:

• Read N vectors from the table

• Combine element-wise (for example, avg) into a 1 output vector

Terminator 2

Fast & Furious 75

Teletubbies

Saving Private Ryan

My Little Pony

Masha and the Bear



11

Recommender Embedding Characteristics

• Number of reads per write: 1 to 100s

• Memory bandwidth limited operations: few math ops per byte accessed

• Size varies widely: 100s of MB to 10s of TB

• Number of tables (features): 10s to 100s

• Rows per table: 10s to billions

• Columns per table (vector dimension): ~10 to 100s

• Large sizes:

• Require high address translation rates

• Exceed single accelerator memory (10s to ~100 GB), but can be accommodated:

• Frequency of row accesses tends to follow a power-law like distribution

• Few frequent items, long tail of very infrequent items

• Good match for memory hierarchies (that include large host memories, etc.)



12

Histogram of Criteo 1TB Feature-19 Categories

• X-axis: category IDs (~300M)

• Y-axis: number of occurrences in the dataset (note that axis is log10)



13

Recommender MLP

• Embedding outputs are put through sequences of fully-connected (FC) layers

• Also known as Multi Layer Perceptrons (MLP)

• Each FC layer:

• Connects all its input elements to all output elements

• Fully-connected because there is no known structure or spatial relationship in the data

• Implemented as a matrix-matrix multiply

• An KxN matrix of weights projects K-element input vector to N-element output vector

• Typically operates on a batch of M samples, for training and inference -> [M, K] x [K, N] matmul

• Each FC layer is typically followed by:

• Non-linearity (ReLU, sigmoid, …)

• Sometimes a normalization (Batch Norm, …) × =

W X Y



14

Recommender MLP

• Layers often form a “tower”: width narrows towards the output
• Depths vary in 3-10 range

• Sample small config: 256-128-64

• Sample larger config: 2048-1024-512-256

FC FC FC

Input

Output



15

Grid Data



16

2D Grid Data

• Input:

• 2D image, can be thought of as:

• 3D tensor: height x width x channels

• 2D matrix of vectors: height x width x channels

• Network:

• CNN: sequence of convolutions

• Transformer (attention-based)

• Output:

• Vector: probabilities for different classes, embedding vector for image search, …

• Multiple vectors: bounding boxes (2D, 3D) for object detection, …

• 2D image: segmentation, style transfer, denoising, upscaling, …



17

Convolution Layer

• Key observation: there is a spatial relationship among data elements

• Convolution takes advantage of this observation:

• Each output value is computed from a small (7x7, 5x5, 3x3) neighborhood in the input

• As opposed to an FC layer, which uses all of the input

• By stacking multiple convolutions more of input influences output elements

• Convolution params: K, C, R, S

• R, S: height, width of the filter

• C number of input channels

• K filters, each produces a single output channel (plane)

Input Output



18

Convolution Layer

• Input is a 2D grid of vectors

• Height x Width x Channels

• Typical input image has 3 channels (red, 
green, blue)

• Channel count typically increases for 
deeper layers

• Often batch size is greater than 1

• Input becomes a 4D tensor: N, H, W, C

CxRxS filter

1 output channel

C
H

W

Input

C channels



19

Convolution Layer

• Input is a 2D grid of vectors

• Height x Width x Channels

• Typical input image has 3 channels (red, 
green, blue)

• Channel count typically increases for 
deeper layers

• Often batch size is greater than 1

• Input becomes a 4D tensor: N, H, W, C

CxRxS filter

1 output channel

C
H

W

Input

C channels

Output

CxRxS filter

K channels

H

W
K such filters

Input

C channels



20

CNNs Typically Consist of Several Stages

• Stage: sequence of repeated blocks

• Each stage typically decreases spatial resolution, increases channel count

• Block:

• Sequence of convolutions (and other layers) with the same WxH

• Often ~3 convolutions, each followed by a normalization (BN, LN, …) and non-linearity (ReLU, …)

Conv ConvConv ConvConv



21

Convolution: Some Spatial Variants

• Diluted convolution

• Filter “taps” are spaced out D elements apart

• Increases the receptive field at constant flops

• Deformable convolution

• Learns through training how to space out filter “taps”

• Strided convolution:

• Filters are applied at stride U

• Reduces output resolution by a factor of U

• Deconvolution:

• Inverse of strided conv – increases resolution

Input

Output



22

Convolution: Some Channel Variants

• “Traditional” convolution
• Parameters: KCRS

• Multiply adds: KCRSHW

• Depth-separable convolution

• Parameters: CRS + KC

• Multiply adds: CRSHW + KCHW

• Grouped convolution, G groups:

• Parameters: KCRS/G

• Multiply adds: KCRSHW/G



23

Depthwise Separable Convolution

• Introduced in MobilNets

• Sequence of 2 convolutions:

• RxS, one per input channel

• Cx1x1, to “mix” channel data

• Parameter count: CRS + CK

• Multiply adds: CRSHW + CKHW

1xRxS filter
H

W

Input

C channels

C such filters

Interm. 

Output

C channels

Cx1x1 filter

K such filters

Output

K channels

1xRxS filter

1 channel

But each channel depends 

only on one corresponding 

input channel

Now each channel depends 

on all input channel



24

Grouped Convolution

• Partition the input channels into G groups

• Each one with C/G channels

• For each of G groups:

• Apply its K/G filters, each is (C/G)RS

• Concatenate the G outputs

• Parameter count: KCRS/G

• Multiply adds: KCRSHW/G

• Usually followed by a 1x1 convolution to 
“mix” the channels
• Note that depth-wise separable convolution 

is a special case: G = C

W

0

C/4 channels

1 2 3

0

C/4xRxS filter

K/4 such filters
0

K/4 channelsC/4 channels

0 1 2 3

Kx1x1 filter

K such filters



25

CNN Characteristics

• Layer types:

• Matmuls: various convolutions

• Reductions: normalizations, pooling, softmax

• Point-wise: non-linearities, adds (for skip connections)

• Parameter sizes:

• 10s to 100s of MB

• 10s to 100s of layers

• Channels: 100s to 1,000s

• Input dimensions:

• 1,000s to millions of pixels

• Arithmetic intensity varies



26

Note on 3D Grid Data

• Inputs: 3D “images”

• Same ideas as for 2D data:

• Convolutions, etc.

• Dimensionality is increased by 1: “2d convolutions” -> “3d convolutions”



27

Sequence Data



28

Sequence Data

• Input:

• Sequence of “tokens” (vectors)

• Network:

• Recurrent nets (LSTM, GRU, …)

• Transformers (attention based)

• Output:

• Sequence of vectors (language transloation, …)

• Vector of probabilities (language models, …)



29

Input Data

• Sequence of tokens:

• Words or word pieces

• Do not have inherent numerical meaning -> must be embedded

• Language embeddings:

• 1-hot look up tables (1 read per write)

• 1 table (2 for translation), compared to recommender 10s-100s

• Up to ~50,000 rows, compared to recommender up to billions

• Embedding vector size: 100s to 1,000s of elements (compared to recommender 10s-100s)

• Note on vision transformers:

• No embedding table

• Input sequence items are vectors extracted from one of intermediate layers of a CNN



30

Simplified View of (Dot) Attention

• For each of N tokens, each represented by a vector:

• Compute key, query, value vectors: each is a matrix-vector multiply

• Compute dot-products of the query vector with all N items’ key vectors: matrix-vector multiply

• Compute “relevance” of each of the N items: softmax over the vector from above

• After softmax the N “relevance” scores sum to 1

• Compute a new vector: sum all N items’ vectors, weighted by their relevance: matrix-vector



31

Simplified View of (Dot) Attention

• For each of N items, each represented by a vector:

• Compute key, query, value vectors: each is a matrix-vector multiply

• Compute dot-products of the query vector with all N items’ key vectors: matrix-vector multiply

• Compute “relevance” of each of the N items: softmax over the vector from above

• After softmax the N “relevance” scores sum to 1

• Compute a new vector: sum all N items’ vectors, weighted by their relevance: matrix-vector

• Combining work for all N items in a sequence for efficiency:

• Matrix-matrix multiply: query, key, value projection

• Matrix-matrix multiply: dot-products of N query vectors with N key vectors

• Batched softmax: compute N relevance vectors

• Matrix-matrix multiply: N weighted sums, each of N vectors



32

Simplified View of (Dot) Attention

• For each of N items, each represented by a vector:

• Compute key, query, value vectors: each is a matrix-vector multiply

• Compute dot-products of the query vector with all N items’ key vectors: matrix-vector multiply

• Compute “relevance” of each of the N items: softmax over the vector from above

• After softmax the N “relevance” scores sum to 1

• Compute a new vector: sum all N items’ vectors, weighted by their relevance: matrix-vector

• Combining work for all N items in a sequence for efficiency:

• Matrix-matrix multiply: query, key, value projection

• Matrix-matrix multiply: dot-products of N query vectors with N key vectors

• Batched softmax: compute N relevance vectors

• Matrix-matrix multiply: N weighted sums, each of N vectors

• Batch of more than 1 sequence further increases matrix sizes or batch for BMMs



33

Transformer Building Block

• Input/output for a block: batch_size x seq_len x hidden_size

Q

K

V

Bmm1

S
o
f
t
m
a
x

D
r
o
p
o
u
t

Bmm2

L
 N

o
rm

Proj

D
r
o
p
o
u
t

A
d
d

Fc1 Fc2

G
e
L
U

L
 
N
o
r
m

D
r
o
p
o
u
t

A
d
d

Feed ForwardMulti-Head Attention

Matmul without parameters

Non Matmul layer

Matmul with learned parameters

C
o

n
c

a
t



34

Characteristics

• Layer types:

• Matmuls: matrix-multiplies, batched matrix multiplies

• Reductions: normalizations (LN, …), softmax

• Point-wise: adds (skip connections), nonlinearities (GeLU, ReLU, …)
• Embeddings: 1-hot, relatively small (30K – 50K entries)

• Parameter sizes:

• 10s to ~100 Transformer-like blocks

• Hidden size (vector size per item): 100s to ~20,000 elements

• Model sizes: 100s MB to ~1 TB

• Input Dimensions:

• Sequence lengths: 100s to 1,000s of items

• Batch sizes: 1000s of sequences (training on many accelerators)

• High arithmetic intensity:

• Matrix dimensions for parameter matmuls: 100s to 1,000s

• Dimensions for BMMs: 100s



35

Graph Data



36

• Graph examples:

• Social graphs:

• Users are nodes

• Edges indicates two users are connected

• Conference attendance

• Nodes are people and conferences

• Edge indicates attendance at a conference

• Graph tasks:

• Edge prediction

• Node embedding (for searches)

• compute N-element vectors for nodes, so that “similar” nodes are close in N-dimensional space

• Node classification (fraud detection, etc.)

• …



37

Graph Convolutional Neutworks

• Mostly layers we have seen before:

• Matrix multiplies, non-linearities, adds, normalizations

• A new one: sparse-dense matrix multiply (aggregating neighbor node vectors)

• Dense matrix: vectors for all the nodes in a subgraph

• Sparse matrix: adjacency matrix for the subgraph

• Multiplication yields a sum of neighbors’ vectors

×



38

Characteristics

• Layer types:

• Matmul: matrix multiplies, sparse matrix multiplies

• Reduction: vector norms

• Point-wise: add, concat, non-linearities

• Online data (subgraph) preparation

• Sampling the full graph (too large to process all nodes/edges at once)

• Random walks, sparse adjacency matrix preparations, etc.

• Time taken can be comparable to neural network fwd/bwd pass

• Often distributed over multiple compute nodes



39

Summary



40

Summary

• Neural network types usually depend on the input data category

• Unstructured data: MLPs

• Regular grid data: CNNs, CNN+Transformers

• Sequence data: Transformers (attention nets), RNNs

• Irregular/graph data: GNNs

• Operation types:

• Matmuls: matrix multiplies (aka FC, Linear layers), BMMs, convolutions, sparse-matrix multiplies

• Reductions: softmax, normalizations, norms, …
• Point-wise: non-linearities, adds, concats, …
• Look up tables: for categorical data

• Large to very large tables for recommenders, small to medium tables for language networks

• Skip connections are popular in CNNs and Transformers

• New operation variants keep getting invented

• Model size and arithmetic intensity varies


