MODERN NEURAL | -

NETWORKS AND THEIR .
COMPUTATIONAL
CHARACTERISTICS

Paulius Micikevicius, NVIDIA
HotChips 2021, Tutorial: ML Performance

N
.
o
»

Outline

Overview and input data categories
Network for various data types

Unstructured data
Grid data
Sequence data
Graph data

Summary

2 NVIDIA.

High Level View

Neural Networks are composed of “layers”
Data “flows” through the layers
Fwd and bwd for training
Fwd for inference
Data: vectors/matrices
Each layer:
Consumes the inputs
Performs some operation (may have it own params/weights)

Input Output
i . GRS

Produces the outputs

3 NVIDIA.

Layer Compute Categories

Dot-product based (will be referred to as MatMuls)
Output element involves a dot-product
Matrix multiplies, also known as: Linear, fully connected, projection, ...
Convolutions
Reductions
Output element involves reducing (accumulating) values over some dimension(s) of a tensor
Examples: sum, norm (sum of squares), mean
Most normalization (Batch Normalization, Layer Normalization, ...) include this primitive
Element-wise
Output element depends on a corresponding element in input tensor(s)
Non-linearities: ReLU, GelLU, Sigmoid, ...
Add (add two tensors point-wise), ...

NVIDIA.

Network Input Data Categories

Regular structure:
1D (sequences): text, audio, stock price over time, temperature over time, ...
2D: images, ...
3D: MRI data, ...

Irregular/unstructured:
Graphs
Point clouds
Sets of attributes

5 NVIDIA.

Unstructured Data

Unstructured Data: Set of Attributes

Input:
a vector is formed from all the attributes
Network:
MLP: a sequence of fully connected layers
Example application: recommenders
Typical output:
Scalar value: relevance, probability, ...
Vector: embedding vector, for finding similar items (proximity in vector space)

7 NVIDIA.

Two Types of Attributes for Input

Numerical
May undergo some normalization, become input vector elements
Examples: connection bandwidth, weight, price, ...

Categorical
Examples: user age group, movie ID, ...
Do not have a humerical meaning -> must be embedded to become vectors
Embedding: table lookup using category ID

Table values are learned

Table per attribute (sometimes also known as feature)

8 NVIDIA.

~—

User id: Stan Roberts (00000001)

Location: Cupertino (02)

/

Age group: (3)

Device: Fire Stick 4K (173)

/

Movie ID: Free Solo (1434298)

-

9 < NVIDIA.

Multi-Hot Features

Typically a history of N items

General operation:

Read N vectors from the table

Combine element-wise (for example, avg) into a 1 output vector

Terminator 2

Fast & Furious 75

Saving Private Ryan

Teletubbies

My Little Pony

Masha and the Bear

10

NVIDIA.

Recommender Embedding Characteristics

Number of reads per write: 1 to 100s
Memory bandwidth limited operations: few math ops per byte accessed
Size varies widely: 100s of MB to 10s of TB
Number of tables (features): 10s to 100s
Rows per table: 10s to billions
Columns per table (vector dimension): ~10 to 100s
Large sizes:
Require high address translation rates
Exceed single accelerator memory (10s to ~100 GB), but can be accommodated:

Frequency of row accesses tends to follow a power-law like distribution
Few frequent items, long tail of very infrequent items

Good match for memory hierarchies (that include large host memories, etc.)

11 NVIDIA.

Histogram of Criteo 1TB Feature-19 Categories

10°
107
10°
10° {
10°

X-axis: category IDs (~300M)
Y-axis: number of occurrences in the dataset (note that axis is log10)

L

0.0 05

10

15

20

25

30
le8

IIIIIIIII

Recommender MLP

Embedding outputs are put through sequences of fully-connected (FC) layers
Also known as Multi Layer Perceptrons (MLP)
Each FC layer:
Connects all its input elements to all output elements
Fully-connected because there is no known structure or spatial relationship in the data
Implemented as a matrix-matrix multiply
An KxN matrix of weights projects K-element input vector to N-element output vector
Typically operates on a batch of M samples, for training and inference -> [M, K] x [K, N] matmul
Each FC layer is typically followed by:

Non-linearity (ReLU, sigmoid, ...) w

Sometimes a normalization (Batch Norm, ...)

ONONOXORONOXCKO
OO0 0O

13

E:

NVIDIA.

Recommender MLP

Layers often form a “tower”: width narrows towards the output
Depths vary in 3-10 range
Sample small config: 256-128-64
Sample larger config: 2048-1024-512-256

@E @E @ol,zut

Input

14 NVIDIA.

¢ Grid Data

2D Grid Data

Input:
2D image, can be thought of as:

3D tensor: height x width x channels

2D matrix of vectors: height x width x channels
Network:
CNN: sequence of convolutions
Transformer (attention-based)
Output:
Vector: probabilities for different classes, embedding vector for image search, ...
Multiple vectors: bounding boxes (2D, 3D) for object detection, ...
2D image: segmentation, style transfer, denoising, upscaling, ...

16 NVIDIA.

Convolution Layer

Key observation: there is a spatial relationship among data elements
Convolution takes advantage of this observation:

Each output value is computed from a small (7x7, 5x5, 3x3) neighborhood in the input

As opposed to an FC layer, which uses all of the input
By stacking multiple convolutions more of input influences output elements
Convolution params: K, C, R, S
R, S: height, width of the filter Input Output

C number of input channels mam mam

K filters, each produces a single output channel (plane)

NVIDIA.

Convolution Layer

——— y Input is a 2D grid of vectors
. [oxos mr Height x Width x Channels
npu
P C Typical input image has 3 channels (red,

green, blue)

C channels 1 output channel Channel count typically increases for

deeper layers
Often batch size is greater than 1
Input becomes a 4D tensor: N, H, W, C

18 NVIDIA.

W

Convolution Layer

w
2‘/\ L/
CxRxS filter '
Input c
C channels 1 output channel
2‘/\— K such filters
CxRxS filter '
Input Output
. J
"
C channels K channels

Input is a 2D grid of vectors
Height x Width x Channels

Typical input image has 3 channels (red,
green, blue)

Channel count typically increases for
deeper layers

Often batch size is greater than 1
Input becomes a 4D tensor: N, H, W, C

NVIDIA.

CNNs Typically Consist of Several Stages

Stage: sequence of repeated blocks
Each stage typically decreases spatial resolution, increases channel count
Block:
Sequence of convolutions (and other layers) with the same WxH
Often ~3 convolutions, each followed by a normalization (BN, LN, ...) and non-linearity (RelLU, ...)

- -

20 < NVIDIA.

Convolution: Some Spatial Variants

Diluted convolution

Filter “taps” are spaced out D elements apart

Increases the receptive field at constant flops
Deformable convolution

Learns through training how to space out filter “taps”
Strided convolution:

Filters are applied at stride U

Reduces output resolution by a factor of U
Deconvolution:

Inverse of strided conv - increases resolution

Output

Input

NVIDIA.

Convolution: Some Channel Variants

“Traditional” convolution
Parameters: KCRS
Multiply adds: KCRSHW
Depth-separable convolution
Parameters: CRS + KC
Multiply adds: CRSHW + KCHW
Grouped convolution, G groups:
Parameters: KCRS/G
Multiply adds: KCRSHW/G

22 NVIDIA.

Depthwise Separable Convolution

C such filters

I

1xRxS filter

Introduced in MobilNets 7
Sequence of 2 convolutions: IXRXS filter

RXS, one per input channel

Cx1x1, to “mix” channel data ! channe
Parameter count: CRS + CK
Multiply adds: CRSHW + CKHW o mm—

H
Input
C channels

K such filters

(Cxixi fiter J
Interm.
Output Output
- J
h'd
C channels K channels

But each channel depends
only on one corresponding
input channel

Now each channel depends
on all input channel

23 NVIDIA.

Grouped Convolution

w
-

Partition the input channels into G groups s

Each one with C/G channels
For each of G groups: e

Apply its K/G filters, each is (C/G)RS v e
Concatenate the G outputs o | |K4suenfiters| o
Parameter count: KCRS/G

. ~~ —
Mu lt'lply adds: KCRSHW/G C/4 channels K/4 channels
K such filters

Usually followed by a 1x1 convolution to —cT |
“mix” the channels o I

Note that depth-wise separable convolution
is a special case: G =C

24

“<ZNVIDIA.

CNN Characteristics

Layer types:
Matmuls: various convolutions
Reductions: normalizations, pooling, softmax
Point-wise: non-linearities, adds (for skip connections)
Parameter sizes:
10s to 100s of MB
10s to 100s of layers
Channels: 100s to 1,000s
Input dimensions:
1,000s to millions of pixels

Arithmetic intensity varies

25 NVIDIA.

Note on 3D Grid Data

Inputs: 3D “images”
Same ideas as for 2D data:

Convolutions, etc.
Dimensionality is increased by 1: “2d convolutions” -> “3d convolutions”

26 NVIDIA.

Sequence Data

Sequence Data

Input:
Sequence of “tokens” (vectors)
Network:
Recurrent nets (LSTM, GRU, ...)
Transformers (attention based)
Output:
Sequence of vectors (language transloation, ...)
Vector of probabilities (language models, ...)

28 NVIDIA.

Input Data

Sequence of tokens:
Words or word pieces
Do not have inherent numerical meaning -> must be embedded
Language embeddings:
1-hot look up tables (1 read per write)
1 table (2 for translation), compared to recommender 10s-100s
Up to ~50,000 rows, compared to recommender up to billions
Embedding vector size: 100s to 1,000s of elements (compared to recommender 10s-100s)

Note on vision transformers:
No embedding table
Input sequence items are vectors extracted from one of intermediate layers of a CNN

29 NVIDIA.

Simplified View of (Dot) Attention

For each of N tokens, each represented by a vector:
Compute key, query, value vectors: each is a matrix-vector multiply
Compute dot-products of the query vector with all N items’ key vectors: matrix-vector multiply
Compute “relevance” of each of the N items: softmax over the vector from above

After softmax the N “relevance” scores sum to 1

Compute a new vector: sum all N items’ vectors, weighted by their relevance: matrix-vector

30 NVIDIA.

Simplified View of (Dot) Attention

For each of N items, each represented by a vector:
Compute key, query, value vectors: each is a matrix-vector multiply
Compute dot-products of the query vector with all N items’ key vectors: matrix-vector multiply
Compute “relevance” of each of the N items: softmax over the vector from above

After softmax the N “relevance” scores sum to 1
Compute a new vector: sum all N items’ vectors, weighted by their relevance: matrix-vector
Combining work for all N items in a sequence for efficiency:
Matrix-matrix multiply: query, key, value projection
Matrix-matrix multiply: dot-products of N query vectors with N key vectors
Batched softmax: compute N relevance vectors
Matrix-matrix multiply: N weighted sums, each of N vectors

31 NVIDIA.

Simplified View of (Dot) Attention

For each of N items, each represented by a vector:
Compute key, query, value vectors: each is a matrix-vector multiply
Compute dot-products of the query vector with all N items’ key vectors: matrix-vector multiply
Compute “relevance” of each of the N items: softmax over the vector from above

After softmax the N “relevance” scores sum to 1
Compute a new vector: sum all N items’ vectors, weighted by their relevance: matrix-vector
Combining work for all N items in a sequence for efficiency:
Matrix-matrix multiply: query, key, value projection
Matrix-matrix multiply: dot-products of N query vectors with N key vectors
Batched softmax: compute N relevance vectors

Matrix-matrix multiply: N weighted sums, each of N vectors

Batch of more than 1 sequence further increases matrix sizes or batch for BMMs

32 NVIDIA.

Transformer Building Block

Input/output for a block: batch_size x seq_len x hidden_size

X = - = + £
Bmm1l + Q =p| BMM2 p=P| ol oPp|T S oy 2T l—
sl |2 Q ol IZ] | <] o <
n (=) © () - o) -
Multi-Head Attention Feed Forward

. Matmul with learned parameters

Matmul without parameters

Non Matmul layer

33 “<ZNVIDIA.

Characteristics

Layer types:
Matmuls: matrix-multiplies, batched matrix multiplies
Reductions: normalizations (LN, ...), softmax
Point-wise: adds (skip connections), nonlinearities (GeLU, RelLU, ...)
Embeddings: 1-hot, relatively small (30K - 50K entries)
Parameter sizes:
10s to ~100 Transformer-like blocks
Hidden size (vector size per item): 100s to ~20,000 elements
Model sizes: 100s MB to ~1 TB
Input Dimensions:
Sequence lengths: 100s to 1,000s of items
Batch sizes: 1000s of sequences (training on many accelerators)
High arithmetic intensity:
Matrix dimensions for parameter matmuls: 100s to 1,000s
Dimensions for BMMs: 100s

34

NVIDIA.

.. Graph Data

Graph examples:
Social graphs:
Users are nodes
Edges indicates two users are connected
Conference attendance
Nodes are people and conferences
Edge indicates attendance at a conference
Graph tasks:
Edge prediction
Node embedding (for searches)
compute N-element vectors for nodes, so that “similar” nodes are close in N-dimensional space
Node classification (fraud detection, etc.)

36 NVIDIA.

Graph Convolutional Neutworks

Mostly layers we have seen before:
Matrix multiplies, non-linearities, adds, normalizations
A new one: sparse-dense matrix multiply (aggregating neighbor node vectors)
Dense matrix: vectors for all the nodes in a subgraph
Sparse matrix: adjacency matrix for the subgraph
Multiplication yields a sum of neighbors’ vectors

g I

—
E—

37 NVIDIA.

Characteristics

Layer types:
Matmul: matrix multiplies, sparse matrix multiplies
Reduction: vector norms

Point-wise: add, concat, non-linearities

Online data (subgraph) preparation
Sampling the full graph (too large to process all nodes/edges at once)
Random walks, sparse adjacency matrix preparations, etc.
Time taken can be comparable to neural network fwd/bwd pass
Often distributed over multiple compute nodes

38

NVIDIA.

Summary

Summary

Neural network types usually depend on the input data category
Unstructured data: MLPs
Regular grid data: CNNs, CNN+Transformers
Sequence data: Transformers (attention nets), RNNs
Irregular/graph data: GNNs
Operation types:
Matmuls: matrix multiplies (aka FC, Linear layers), BMMs, convolutions, sparse-matrix multiplies
Reductions: softmax, normalizations, norms, ...
Point-wise: non-linearities, adds, concats, ...
Look up tables: for categorical data
Large to very large tables for recommenders, small to medium tables for language networks
Skip connections are popular in CNNs and Transformers
New operation variants keep getting invented
Model size and arithmetic intensity varies

40 NVIDIA.

