MODERN NEURAL NETWORKS AND THEIR COMPUTATIONAL CHARACTERISTICS

Paulius Micikevičius, NVIDIA

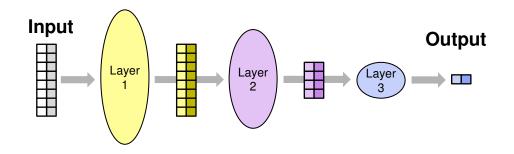
HotChips 2021, Tutorial: ML Performance

Outline

- Overview and input data categories
- Network for various data types
 - Unstructured data
 - Grid data
 - Sequence data
 - Graph data
- Summary

High Level View

- Neural Networks are composed of "layers"
- Data "flows" through the layers
 - Fwd and bwd for training
 - Fwd for inference
 - Data: vectors/matrices
- Each layer:
 - Consumes the inputs
 - Performs some operation (may have it own params/weights)
 - Produces the outputs



Layer Compute Categories

Dot-product based (will be referred to as MatMuls)

- Output element involves a dot-product
- Matrix multiplies, also known as: Linear, fully connected, projection, ...
- Convolutions

Reductions

- Output element involves reducing (accumulating) values over some dimension(s) of a tensor
- Examples: sum, norm (sum of squares), mean
- Most normalization (Batch Normalization, Layer Normalization, ...) include this primitive

Element-wise

- Output element depends on a corresponding element in input tensor(s)
- Non-linearities: ReLU, GeLU, Sigmoid, ...
- Add (add two tensors point-wise), ...

Network Input Data Categories

• Regular structure:

- 1D (sequences): text, audio, stock price over time, temperature over time, ...
- 2D: images, ...
- 3D: MRI data, ...

Irregular/unstructured:

- Graphs
- Point clouds
- Sets of attributes

Unstructured Data

Unstructured Data: Set of Attributes

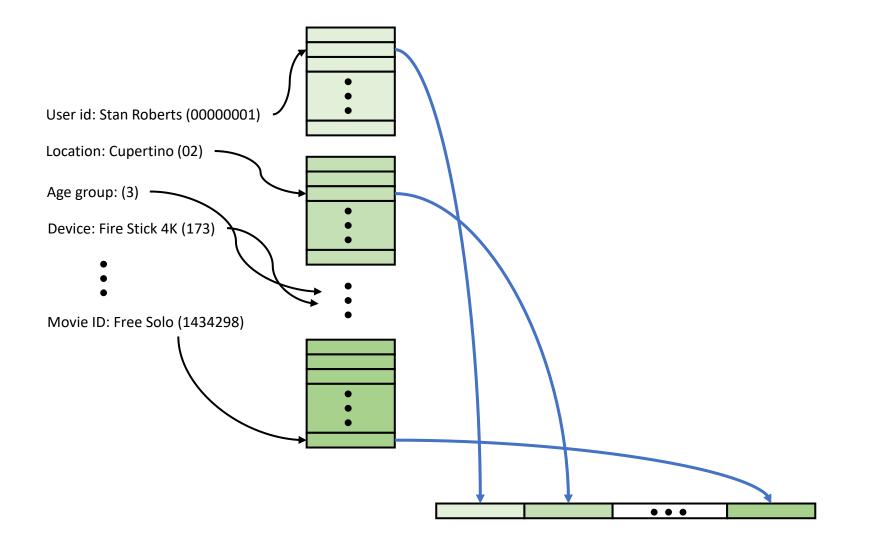
Input:

- a vector is formed from all the attributes
- Network:
 - MLP: a sequence of fully connected layers
 - Example application: recommenders
- Typical output:
 - Scalar value: relevance, probability, ...
 - Vector: embedding vector, for finding similar items (proximity in vector space)

Two Types of Attributes for Input

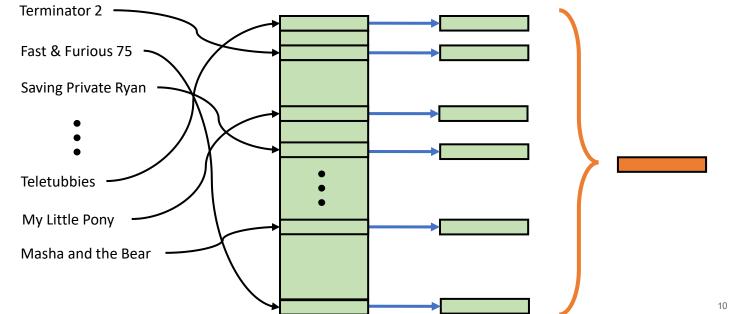
Numerical

- May undergo some normalization, become input vector elements
- Examples: connection bandwidth, weight, price, ...
- Categorical
 - Examples: user age group, movie ID, ...
 - Do not have a numerical meaning -> must be *embedded* to become vectors
 - Embedding: table lookup using category ID
 - Table values are learned
 - Table per attribute (sometimes also known as *feature*)



Multi-Hot Features

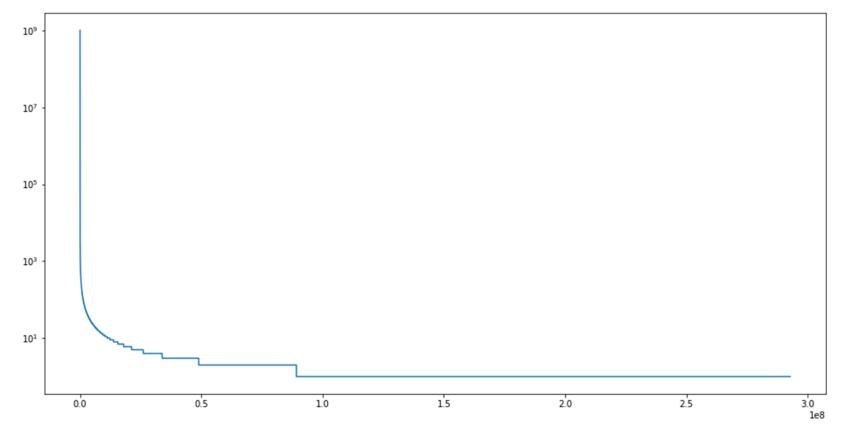
- Typically a history of *N* items
- General operation:
 - Read *N* vectors from the table
 - Combine element-wise (for example, avg) into a 1 output vector



Recommender Embedding Characteristics

- Number of reads per write: 1 to 100s
- Memory bandwidth limited operations: few math ops per byte accessed
- Size varies widely: 100s of MB to 10s of TB
 - Number of tables (features): 10s to 100s
 - Rows per table: 10s to billions
 - Columns per table (vector dimension): ~10 to 100s
- Large sizes:
 - Require high address translation rates
 - Exceed single accelerator memory (10s to ~100 GB), but can be accommodated:
 - Frequency of row accesses tends to follow a power-law like distribution
 - Few frequent items, long tail of very infrequent items
 - Good match for memory hierarchies (that include large host memories, etc.)

Histogram of Criteo 1TB Feature-19 Categories

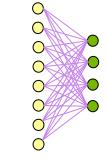


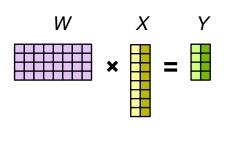
- X-axis: category IDs (~300M)
- Y-axis: number of occurrences in the dataset (note that axis is log10)

17

Recommender MLP

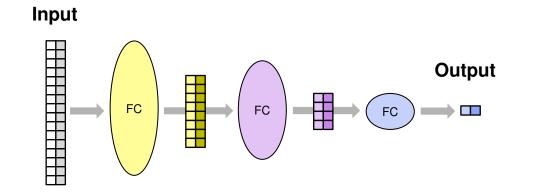
- Embedding outputs are put through sequences of fully-connected (FC) layers
 - Also known as Multi Layer Perceptrons (MLP)
- Each FC layer:
 - Connects all its input elements to all output elements
 - Fully-connected because there is no known structure or spatial relationship in the data
 - Implemented as a matrix-matrix multiply
 - An KxN matrix of weights projects K-element input vector to N-element output vector
 - Typically operates on a batch of M samples, for training and inference -> [M, K] x [K, N] matmul
- Each FC layer is typically followed by:
 - Non-linearity (ReLU, sigmoid, ...)
 - Sometimes a normalization (Batch Norm, ...)





Recommender MLP

- Layers often form a "tower": width narrows towards the output
 - Depths vary in 3-10 range
 - Sample small config: 256-128-64
 - Sample larger config: 2048-1024-512-256



2D Grid Data

Input:

- 2D image, can be thought of as:
 - 3D tensor: height x width x channels
 - 2D matrix of vectors: height x width x channels

• Network:

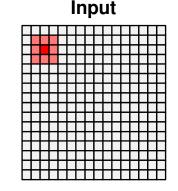
- CNN: sequence of convolutions
- Transformer (attention-based)

• Output:

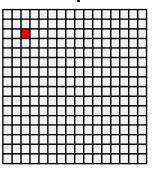
- Vector: probabilities for different classes, embedding vector for image search, ...
- Multiple vectors: bounding boxes (2D, 3D) for object detection, ...
- 2D image: segmentation, style transfer, denoising, upscaling, ...

Convolution Layer

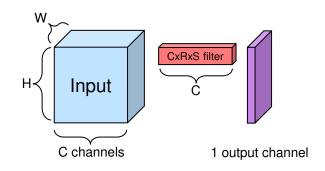
- Key observation: there is a spatial relationship among data elements
- Convolution takes advantage of this observation:
 - Each output value is computed from a small (7x7, 5x5, 3x3) neighborhood in the input
 - As opposed to an FC layer, which uses all of the input
 - By stacking multiple convolutions more of input influences output elements
- Convolution params: K, C, R, S
 - R, S: height, width of the filter
 - C number of input channels
 - K filters, each produces a single output channel (plane)



Output

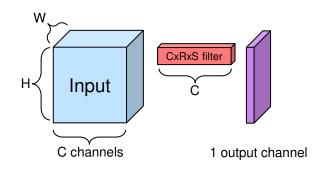


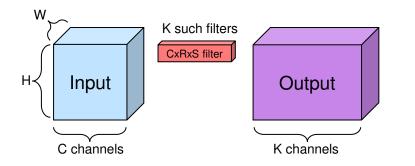
Convolution Layer



- Input is a 2D grid of vectors
 - Height x Width x Channels
 - Typical input image has 3 channels (red, green, blue)
 - Channel count typically increases for deeper layers
- Often batch size is greater than 1
 - Input becomes a 4D tensor: N, H, W, C

Convolution Layer



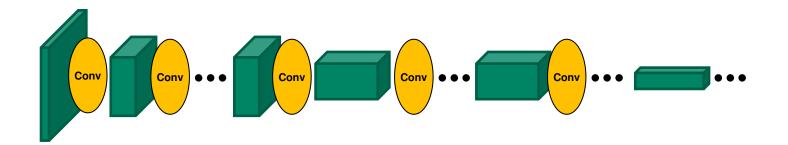


- Input is a 2D grid of vectors
 - Height x Width x Channels
 - Typical input image has 3 channels (red, green, blue)
 - Channel count typically increases for deeper layers
- Often batch size is greater than 1
 - Input becomes a 4D tensor: N, H, W, C

CNNs Typically Consist of Several Stages

• Stage: sequence of repeated blocks

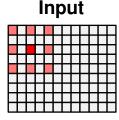
- Each stage typically decreases spatial resolution, increases channel count
- Block:
 - Sequence of convolutions (and other layers) with the same WxH
 - Often ~3 convolutions, each followed by a normalization (BN, LN, ...) and non-linearity (ReLU, ...)



Convolution: Some Spatial Variants

Diluted convolution

- Filter "taps" are spaced out D elements apart
- Increases the receptive field at constant flops
- Deformable convolution
 - Learns through training how to space out filter "taps"
- Strided convolution:
 - Filters are applied at stride U
 - Reduces output resolution by a factor of U
- Deconvolution:
 - Inverse of strided conv increases resolution



Output

+													
╋	\vdash	-		-	-	-		_	-		-	-	_
╈	H					-	-	-	-	-	-	-	-

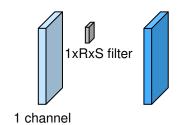
Convolution: Some Channel Variants

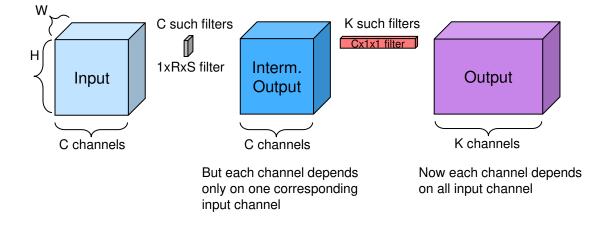
• "Traditional" convolution

- Parameters: KCRS
- Multiply adds: KCRSHW
- Depth-separable convolution
 - Parameters: CRS + KC
 - Multiply adds: CRSHW + KCHW
- Grouped convolution, G groups:
 - Parameters: KCRS/G
 - Multiply adds: KCRSHW/G

Depthwise Separable Convolution

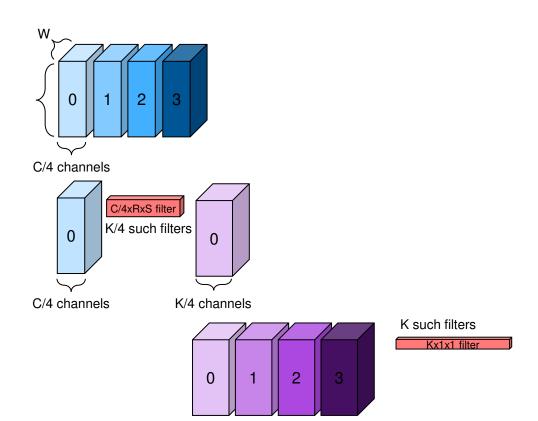
- Introduced in MobilNets
- Sequence of 2 convolutions:
 - RxS, one per input channel
 - Cx1x1, to "mix" channel data
- Parameter count: CRS + CK
- Multiply adds: CRSHW + CKHW





Grouped Convolution

- Partition the input channels into G groups
 - Each one with C/G channels
- For each of G groups:
 - Apply its K/G filters, each is (C/G)RS
- Concatenate the G outputs
- Parameter count: KCRS/G
- Multiply adds: KCRSHW/G
- Usually followed by a 1x1 convolution to "mix" the channels
 - Note that depth-wise separable convolution is a special case: G = C



CNN Characteristics

• Layer types:

- Matmuls: various convolutions
- Reductions: normalizations, pooling, softmax
- Point-wise: non-linearities, adds (for skip connections)

Parameter sizes:

- 10s to 100s of MB
- 10s to 100s of layers
- Channels: 100s to 1,000s
- Input dimensions:
 - 1,000s to millions of pixels
- Arithmetic intensity varies

Note on 3D Grid Data

- Inputs: 3D "images"
- Same ideas as for 2D data:
 - Convolutions, etc.
 - Dimensionality is increased by 1: "2d convolutions" -> "3d convolutions"

Sequence Data

Sequence Data

• Input:

- Sequence of "tokens" (vectors)
- Network:
 - Recurrent nets (LSTM, GRU, ...)
 - Transformers (attention based)
- Output:
 - Sequence of vectors (language transloation, ...)
 - Vector of probabilities (language models, ...)

Input Data

• Sequence of tokens:

- Words or word pieces
- Do not have inherent numerical meaning -> must be embedded

Language embeddings:

- 1-hot look up tables (1 read per write)
- 1 table (2 for translation), compared to recommender 10s-100s
- Up to ~50,000 rows, compared to recommender up to billions
- Embedding vector size: 100s to 1,000s of elements (compared to recommender 10s-100s)

• Note on vision transformers:

- No embedding table
- Input sequence items are vectors extracted from one of intermediate layers of a CNN

Simplified View of (Dot) Attention

- For each of N tokens, each represented by a vector:
 - Compute *key*, *query*, *value* vectors: each is a matrix-vector multiply
 - Compute dot-products of the *query* vector with all N items' *key* vectors: matrix-vector multiply
 - Compute "relevance" of each of the N items: softmax over the vector from above
 - After softmax the N "relevance" scores sum to 1
 - Compute a new vector: sum all N items' vectors, weighted by their relevance: matrix-vector

Simplified View of (Dot) Attention

• For each of N items, each represented by a vector:

- Compute *key*, *query*, *value* vectors: each is a matrix-vector multiply
- Compute dot-products of the *query* vector with all N items' *key* vectors: matrix-vector multiply
- Compute "relevance" of each of the N items: softmax over the vector from above
 - After softmax the N "relevance" scores sum to 1
- Compute a new vector: sum all N items' vectors, weighted by their relevance: matrix-vector
- Combining work for all N items in a sequence for efficiency:
 - Matrix-matrix multiply: *query*, *key*, *value* projection
 - Matrix-matrix multiply: dot-products of N query vectors with N key vectors
 - Batched softmax: compute N relevance vectors
 - Matrix-matrix multiply: N weighted sums, each of N vectors

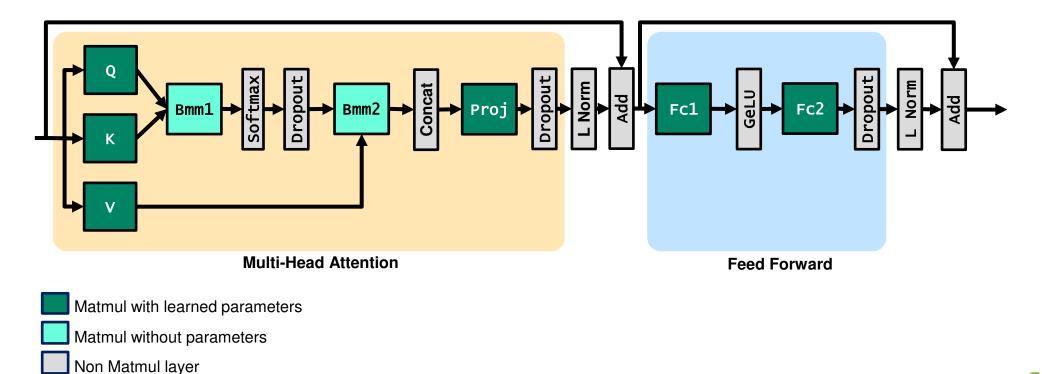
Simplified View of (Dot) Attention

• For each of N items, each represented by a vector:

- Compute *key*, *query*, *value* vectors: each is a matrix-vector multiply
- Compute dot-products of the *query* vector with all N items' *key* vectors: matrix-vector multiply
- Compute "relevance" of each of the N items: softmax over the vector from above
 - After softmax the N "relevance" scores sum to 1
- Compute a new vector: sum all N items' vectors, weighted by their relevance: matrix-vector
- Combining work for all N items in a sequence for efficiency:
 - Matrix-matrix multiply: *query*, *key*, *value* projection
 - Matrix-matrix multiply: dot-products of N query vectors with N key vectors
 - Batched softmax: compute N relevance vectors
 - Matrix-matrix multiply: N weighted sums, each of N vectors
- Batch of more than 1 sequence further increases matrix sizes or batch for BMMs

Transformer Building Block

Input/output for a block: batch_size x seq_len x hidden_size



Characteristics

• Layer types:

- Matmuls: matrix-multiplies, batched matrix multiplies
- Reductions: normalizations (LN, ...), softmax
- Point-wise: adds (skip connections), nonlinearities (GeLU, ReLU, ...)
- Embeddings: 1-hot, relatively small (30K 50K entries)

• Parameter sizes:

- 10s to ~100 Transformer-like blocks
- Hidden size (vector size per item): 100s to ~20,000 elements
- Model sizes: 100s MB to ~1 TB
- Input Dimensions:
 - Sequence lengths: 100s to 1,000s of items
 - Batch sizes: 1000s of sequences (training on many accelerators)
- High arithmetic intensity:
 - Matrix dimensions for parameter matmuls: 100s to 1,000s
 - Dimensions for BMMs: 100s

Graph Data

• Graph examples:

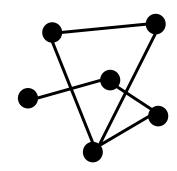
• Social graphs:

- Users are nodes
- Edges indicates two users are connected
- Conference attendance
 - Nodes are people and conferences
 - Edge indicates attendance at a conference
- Graph tasks:

.

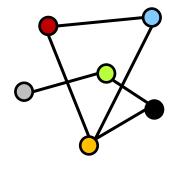
...

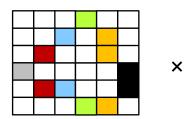
- Edge prediction
- Node embedding (for searches)
 - compute N-element vectors for nodes, so that "similar" nodes are close in N-dimensional space
- Node classification (fraud detection, etc.)

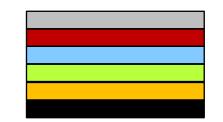


Graph Convolutional Neutworks

- Mostly layers we have seen before:
 - Matrix multiplies, non-linearities, adds, normalizations
- A new one: sparse-dense matrix multiply (aggregating neighbor node vectors)
 - Dense matrix: vectors for all the nodes in a subgraph
 - Sparse matrix: adjacency matrix for the subgraph
 - Multiplication yields a sum of neighbors' vectors







Characteristics

• Layer types:

- Matmul: matrix multiplies, sparse matrix multiplies
- Reduction: vector norms
- Point-wise: add, concat, non-linearities
- Online data (subgraph) preparation
 - Sampling the full graph (too large to process all nodes/edges at once)
 - Random walks, sparse adjacency matrix preparations, etc.
 - Time taken can be comparable to neural network fwd/bwd pass
 - Often distributed over multiple compute nodes

Summary

Neural network types usually depend on the input data category

- Unstructured data: MLPs
- Regular grid data: CNNs, CNN+Transformers
- Sequence data: Transformers (attention nets), RNNs
- Irregular/graph data: GNNs

• Operation types:

- Matmuls: matrix multiplies (aka FC, Linear layers), BMMs, convolutions, sparse-matrix multiplies
- Reductions: softmax, normalizations, norms, ...
- Point-wise: non-linearities, adds, concats, ...
- Look up tables: for categorical data
 - Large to very large tables for recommenders, small to medium tables for language networks
- Skip connections are popular in CNNs and Transformers
- New operation variants keep getting invented
- Model size and arithmetic intensity varies