Too Many Package Options: What Makes Sense for Your Application?

- IDENTIFY TRENDS
 - ANALYZE GROWTH
 - INFLUENCE DECISIONS

RELEVANT, ACCURATE, TIMELY

E. Jan Vardaman, President and Founder

techsearchinc.com

Unprecedented Era of Change for Packaging

Economic advantage of silicon scaling is gone

- High cost of moving to next silicon node
- High cost of fabrication includes design, mask, and fab process
- Only a limited number of foundries can afford to participate for the limited number of companies at advanced nodes
- Heterogeneous integration provides an opportunity to achieve economic advantages lost with end of pure silicon scaling
 - Many options for the package including silicon interposers, FO on substrate, chiplets, and variations of 3D stacking
- Heterogeneous integration offers improved SI, PI, lower inductance and thermal resistance, form factor advantages
 - Co-design of silicon and package essential
 - Thermal issues must be addressed
 - Material selection is important

High-Performance Packaging: Drives the New Era

Markets

- Networking, data centers, Al/accelerators, machine learning, gaming, 5G infrastructure, edge computing
- Key performance metrics driving the adoption of Si interposer, 3D, and HDFO
 - Low latency
 - Bandwidth & data rate increase (GHz, Gbps)
 - Better power efficiency (pJ/bit) and improved power delivery
 - Routing density increase (# of lanes per mm/layer)
 - IO density (IO/mm²)
- Cost Drivers
 - Si partitioning in advanced nodes
 - Reuse of IP for time to market & reduction in cycle time

TechSearch

techsearchinc.com

Many Different Packaging Options

Silicon Interposers

 Xilinx (many FPGA products) started in 2012, AMD shipped in 2015 (GPU + HBM), NVIDIA (GPU + HBM), Google, Baidu, Broadcom, many others in production!

Fan-Out on Substrate

- Chip first (in production since 2016 at ASE) and chip last solutions (many designs)
- In production for network switch at TSMC with InFO_oS (since 2018)
- Amkor Substrate-SWIFT[®], SPIL Fan-Out Embedded Bridge, TFME
- Embedded bridge Intel, IBM, SPIL, TSMC, and others
 - Intel's EMIB silicon bridge in an laminate substrate, embedded by substrate supplier (Intel Stratix 10 for AI accelerator)
 - Amkor, ASE, IBM, SPIL, TSMC offerings
- RDL Interposers InFO-SoIS (System on Integrated Substrate), Samsung R-Cube™, Unimicron, and others
 - Extend to finer feature (2 μ m L/S) switch to fab-like process
- 3D stacking
 - Memory-on-logic (AMD's new 3D Vcache, Samsung's X-Cube) or logic-on-logic (Intel's Foveros)

Source: NVIDIA.

Source: Intel by TechInsights.

Why Si Interposer?

"Logic & Memory"

- Silicon interposer offers the highest density connection
 - Handle communication between HBM stack and logic (FPGA, GPU, or ASIC)
 - Communication between logic slices
 - Most mature, but expensive
- Logic + HBM
 - Early HBM = stacks of 4 DRAM + logic layer, now stack with 8 DRAMs common, future 12

Source: Xilinx.

techsearchinc.com

TSMC's Silicon Interposer Solution

• Increasing size of interposer and multiple HBMs drives the size of the laminate substrate that forms the package

- Package body sizes of 65 mm x 65 mm, 75 mm x 75 mm, increasing to 100mm x 100mm body size
- Applications include AI accelerators, FPGAs, network switch, GPUs

techsearchinc.com

NVIDIA's GPU + HBM

- NVIDIA's GPU with 4 HBMs (8 high stack + logic layer) mounted on Si interposer
 - HBM with wide bus (1,024 I/Os, ~4,000 bumps 55µm micro bump pitch)
- NVIDIA's latest A100 uses GPU + 6 HBMs
 - Continues to use CoWoS process

Source: NVIDIA.

techsearchinc.com

Samsung I-Cube[™] Silicon Interposer

- Samsung's silicon interposer is part of its "cube" family of packages
 - Demonstrated a 2,500mm² silicon interposer for up to 2 logic die plus 8 HBMs in an 85mm x 85mm package
 - Qualification for 2,800mm² silicon interposer is underway

techsearchinc.com

Why Fan-Out on Substrate Solutions?

- Fan-out on substrate applications in production for split die
- Many designs for HBM + logic under investigation with production expected in 2022-23
- Advantages of fan-out on substrate technology
 - Lower cost than Si interposer
 - Potential for larger size packages than with Si interposer because there is less warpage
 - RDL with polyimide has CTE closer to that of the package substrate, resulting in lower residual stress at the package level

Source: TechSearch International, Inc., MediaTek.

ASE's FOCoS (Fan-Out Chip on Substrate)

- Applications include network switch, GPU, AI
 - In production since 2016 for split die for network switch
- ASE chip first or chip last
 - $2\mu m L/S$
 - Up to 4 RDLs

techsearchinc.com

Amkor's Substrate-SWIFT®

- Amkor's chip last FO version
 - 2 μm L/S
 - 4 RDLs qualified
 - 6 RDLs to be qualified by end of 2021

Image courtesy of Amkor Technology, Inc.

- Both 50Ω impedance
 - M1 = SWIFT[®] ▷ -1.42 dB loss @ 4 GHz
- M3 = 2.5D TSV
 -2.95 dB loss @ 4 GHz
 ~4.5 mm trace length

- S-SWIFT®
 - 4 RDL layers
 - Vias progression with dog-bones
- Silicon interposer
 - TSV (Through Silicon Via)

Images courtesy of Amkor Technology, Inc.

Why Embedded Bridge Solutions?

Advantages of embedded bridge technology

- Only use high-density connection where required
- Potential for lower cost with reduced number of RDLs with FO RDL versions
- Improved electrical performance

Many companies offer embedded bridge solutions

- Amkor (embedded in RDL, chip last)
- ASE (embedded in RDL, chip last)
- IBM (embedded in laminate substrate trench)
- Intel (embedded in laminate substrate)
- SPIL (embedded in RDL, chip last)
- TSMC (embedded in RDL for FO, embedded with Si interposer-CoWoS)

Intel's Embedded Multi-die Interconnect Bridge (EMIB)

S-Connect

Source: Amkor Technology

Source: ASE

techsearchinc.com

Intel's Embedded Multi-die Interconnect Bridge (EMIB)


```
Source: TechInsights.
```

- A small silicon bridge chip is embedded into the package (no TSVs) to provide in-package, highdensity connection
 - Micro bumps on chips, communication between chips through bridge die
 - Bridge die, designed and fabricated by Intel, embedded in the laminate substrate by substrate supplier
- Provides a high-density localized interconnect between the FPGA and HBM, density ranges from 250 to 1,000 IO/mm/layer
- Applications include FPGA, discrete GPU, AI, server, and other data center HPC segments

IBM Direct Bonded Heterogeneous Integration (DBHi) Si Bridge

techsearchinc.com

© 2021 TechSearch International, Inc.

Source: IBM.

SPIL FO-EB Technology

Source: SPIL.

• SPIL has qualified a fan-out embedded bridge (FO-EB) RDL test vehicle

- Microbumps used to connect each die to RDL
- C4 bumps connect to next level

• FO-EB targeted for CPU + HBM, GPU, and networking

Samsung R-Cube[™] RDL Interposer

Source: Samsung.

- R-Cube is RDL interposer for logic + HBM
 - Up to 4 layers have been fabricated
 - The 8mm x 12mm HBM2 has a 55 μm minimum pitch
 - Test vehicle package is 55 mm x 55 mm

techsearchinc.com

TSMC InFO System on Integrated Substrate (SoIS)

Source: TSMC.

• High-density heterogeneous package using an RDL interposer with up to 6 interconnection layers

- Alternative to large, high-density substrates where yield and power consumption are challenges
- Good electrical performance (large eye height, low jitter, and almost no layer-to-layer crosstalk), lower insertion loss

New Era of Semiconductor Packaging

Source: Overclock3d.net.

TechSearch

• Chiplets will be a key enabler for next 10-20 years

techsearchinc.com

Die Size Growth: Major Driver for Adoption of Chiplets

Die sizes continued to increase over time for server CPU and GPU

- nVIDIA's 826 mm² die, fabricated at TSMC, is one of the largest in production today
- Samsung reports die sizes of 750 mm²
- Performance requires more transistors, but industry needs a new, more economical approach
 - Smart packaging, including heterogeneous integration and chiplets becomes the answer

Source: AMD internal analysis.

© 2021 TechSearch International, Inc.

Many Drivers for Chiplet Adoption

Disaggregation benefits include optimization node per chiplet

Chiplets can be binned and speed sorted, allowing optimal performance and sale of more chiplets

Smaller die + higher yield (more die per wafer) allow optimized cost per chiplet

Improved power efficiency (goal of 0.5pJ/bit)

Finer bump or pad pitch = higher density

Stitch together to create >1X reticle products

Mix and match

new SKUs

techsearchinc.com

How Do We Define Chiplets?

- A chiplet is an integrated circuit block specifically designed to work with other chiplets to form a larger more complex system that often makes use of reusable IP blocks
 - A chiplet can be created by partitioning a die into functions that are more cost effectively fabricated (smaller die, higher yield, and less advanced nodes)
 - A chiplet is a hard IP block
 - Functions with other chiplets, so design must be co-optimized and silicon cannot be designed in isolation
 - Made possible by communication using chiplet interface (proprietary today)
- Differs from SiP or traditional MCM in that it is a new design, not just a combination of different "off-the-shelf" chips
- Chiplet is not the package, it's the design philosophy
 - Change from "silicon centric thinking" to "system-level planning" and "co-design of IC and package"
 - The industry has to think about chip design in a new way
 - Same impact as when the industry moved from a peripheral chip layout to area array!

AMD Multiple Chiplet Product Introductions

- Multiple generations of desktop and server products using chiplets with organic substrate
 - Split out analog functions from advanced 7nm logic
 - Chiplets can be binned and speedsorted before assembly on the substrate
 - Better memory access
 - Minimize local latency
 - Power efficiency improvement
 - 1, 2, 4 or 8 CPU chiplets plus an I/O chiplet are attached to an organic interposer

Source: Wired.com.

techsearchinc.com

TSMC InFO_oS for Chiplets

Targets AI, network system, edge computing

- Alternative to the laminate MCM package for chiplets
- FO process is a chip-first process
 - Allows interconnect formation after wafer molding
 - Multiple layer RDL acts as a stress-buffer layer, so ELK stress is not a major concern
 - Process optimized to reduce warpage
- Demonstration of 2.5x reticle of fan-out (51mm x 42mm) on a 110mm x 110mm substrate
 - Test vehicle that integrates 10 chiplets (2 logic + 8 I/O die)
 - 5 RDLs (4 with 2/2µm, 1 with 5/5 µm)
 - D2D I/O pitch 36 μm

Technology	МСМ	InFO_oS	
Structure	Chip1 Chip2	Chip1 Chip2	
Min. Line W/S	15/15 um	2/2 um	
Line counts/mm	34	250	
BW/mm	1x	7.3x	

Source: TSMC.

techsearchinc.com

Intel Foveros Technology

- Intel's Foveros technology die are stacked in 3D
 - Base die, using less advanced node, can include power management features, voltage regulators, DC/DC converters
- Benefits include
 - Reduced voltage drop
 - Power efficiency
 - More immediate power delivery to the CPU cores
 - Elimination of passives on substrate
 - System-wide communication across multiple chiplets/dice vs. the limited die-to-die communication capability enabled by passive Si interposers
- Used in the Samsung Galaxy Book S (Mobile PC)
 - Longer lasting battery
 - No fan
 - Very thin package, allows thin product

Intel's Lakefield CPU

- 10nm CPU
- 22nm Base die

techsearchinc.com

Intel's Data Center CPU with EMIB

- Intel's Sapphire Rapids will be Intel's first CPU server for data centers using chiplets
 - All 4 chiplet die will access shared cache and are connected using the modular die fabric (MDF)
 - Any core can talk to other cores on the 4 die and access the shared cache across all 4 quadrants as well as I/O across 4 quadrants

Source: Intel.

Intel Co-EMIB (EMIB + Foveros)

Source: Intel.

• EMIB and Foveros can be combined to provide a high-density solution

- Connecting HBM and logic with silicon bridge
- Intel's data center GPU with 2 large GPU 3D center tiles (Foveros), 8 HBM stacks and 2 additional chips each connected using EMIB

techsearchinc.com

Samsung 3D IC (X-Cube)

Samsung Announces Availability of its Silicon-Proven 3D IC Technology for High-Performance Applications

Source: Samsung.

- Samsung introduction of logic and memory stack
- First version with µbump connections

techsearchinc.com

TSMC SolC[™] Technology

Source: TSMC.

- First commercial products with SoIC expected in 2021
- Commercial products with up to 10 chiplets expected in 2-3 years
- Advanced silicon nodes of 7nm or 5nm could be used
- SoIC could be placed next to HBM on RDL substrate or SoIC could be mounted next to HBM on CoWoS

SolC[™] Compared to 2.5D and 3D IC

Technology	2.5D	3D-IC	SolC
Structure cross-section	SoC1 SoC2 8 µbump 8 BEOL- Interposer	SoC1	SoC1 SolC Bond SoC2
Interconnect	µbump + BEOL	µbump	SoIC bond
Chip Distance	~100 µm	~30 µm	0
Bond-pad Pitch	36µm (1.0X)	36µm (1.0X)	9µm (0.25X)
Speed	0.01X	1.0X	11.9X
Bandwidth Density	0.01X	1.0X	191.0X
Power Efficiency (Energy/bit)	22.9X	1.0X	0.05X

- With SoIC there is virtually no distance between integrated chips, and a very small bond-pad pitch of 9 μm provides good scalability
- Using a bumpless bonding process is critical to improvements in performance, power, resistance, and capacitance (lower inductance and thermal resistance)

AMD's 3D Chiplet

- AMD's Prototype 5900X chip for gaming
 - Gaming performance improvement
- Same 7nm node as RYZEN, but performance gains using 3D chiplet copper-to-copper hybrid bond

Source: AMD.

techsearchinc.com

Many Package Options: Which One Do I Choose?

3D with µbumps

Source: Samsung.

3D with hybrid bond

Source: TSMC.

Fan-Out on Substrate

Embedded Silicon Bridge

Source: Xilinx.

Source: ASE.

© 2021 TechSearch International, Inc.

Thank you!

TechSearch International, Inc. 4801 Spicewood Springs Road, Suite 150 Austin, Texas 78759 USA +1.512.372.8887 tsi@techsearchinc.com

RELEVANT, ACCURATE, TIMELY

techsearchinc.com