Too Many Package Options: What Makes Sense for Your Application?

E. Jan Vardaman, President and Founder

- TRACK INNOVATION
- IDENTIFY TRENDS
- ANALYZE GROWTH
- INFLUENCE DECISIONS

RELEVANT, ACCURATE, TIMELY
Unprecedented Era of Change for Packaging

• Economic advantage of silicon scaling is gone
 – High cost of moving to next silicon node
 – High cost of fabrication includes design, mask, and fab process
 – Only a limited number of foundries can afford to participate for the limited number of companies at advanced nodes

• Heterogeneous integration provides an opportunity to achieve economic advantages lost with end of pure silicon scaling
 – Many options for the package including silicon interposers, FO on substrate, chiplets, and variations of 3D stacking

• Heterogeneous integration offers improved SI, PI, lower inductance and thermal resistance, form factor advantages
 – Co-design of silicon and package essential
 – Thermal issues must be addressed
 – Material selection is important
High-Performance Packaging: Drives the New Era

• Markets
 – Networking, data centers, AI/accelerators, machine learning, gaming, 5G infrastructure, edge computing

• Key performance metrics driving the adoption of Si interposer, 3D, and HDFO
 – Low latency
 – Bandwidth & data rate increase (GHz, Gbps)
 – Better power efficiency (pJ/bit) and improved power delivery
 – Routing density increase (# of lanes per mm/layer)
 – IO density (IO/mm²)

• Cost Drivers
 – Si partitioning in advanced nodes
 – Reuse of IP for time to market & reduction in cycle time
Many Different Packaging Options

• **Silicon Interposers**
 - Xilinx (many FPGA products) started in 2012, AMD shipped in 2015 (GPU + HBM), NVIDIA (GPU + HBM), Google, Baidu, Broadcom, many others in production!

• **Fan-Out on Substrate**
 - Chip first (in production since 2016 at ASE) and chip last solutions (many designs)
 - In production for network switch at TSMC with InFO_oS (since 2018)
 - Amkor Substrate-SWIFT®, SPIL Fan-Out Embedded Bridge, TFME

• **Embedded bridge Intel, IBM, SPIL, TSMC, and others**
 - Intel’s EMIB silicon bridge in an laminate substrate, embedded by substrate supplier (Intel Stratix 10 for AI accelerator)
 - Amkor, ASE, IBM, SPIL, TSMC offerings

• **RDL Interposers InFO-SoIS (System on Integrated Substrate), Samsung R-Cube™, Unimicron, and others**
 - Extend to finer feature (2µm L/S) switch to fab-like process

• **3D stacking**
 - Memory-on-logic (AMD’s new 3D Vcache, Samsung’s X-Cube) or logic-on-logic (Intel’s Foveros)

Source: NVIDIA.

Source: Intel by TechInsights.

Source: ASE.
Why Si Interposer?

- **Silicon interposer offers the highest density connection**
 - Handle communication between HBM stack and logic (FPGA, GPU, or ASIC)
 - Communication between logic slices
 - Most mature, but expensive

- **Logic + HBM**
 - Early HBM = stacks of 4 DRAM + logic layer, now stack with 8 DRAMs common, future 12

Source: Xilinx.
TSMC’s Silicon Interposer Solution

- Increasing size of interposer and multiple HBM's drives the size of the laminate substrate that forms the package
 - Package body sizes of 65 mm x 65 mm, 75 mm x 75 mm, increasing to 100mm x 100mm body size
 - Applications include AI accelerators, FPGAs, network switch, GPUs
NVIDIA’s GPU + HBM

- NVIDIA’s GPU with 4 HBMs (8 high stack + logic layer) mounted on Si interposer
 - HBM with wide bus (1,024 I/Os, ~4,000 bumps 55µm micro bump pitch)
- NVIDIA’s latest A100 uses GPU + 6 HBMs
 - Continues to use CoWoS process

Source: NVIDIA.
Samsung I-Cube™ Silicon Interposer

- Samsung’s silicon interposer is part of its “cube” family of packages
 - Demonstrated a 2,500mm² silicon interposer for up to 2 logic die plus 8 HBMs in an 85mm x 85mm package
 - Qualification for 2,800mm² silicon interposer is underway

Source: Samsung.
Why Fan-Out on Substrate Solutions?

• Fan-out on substrate applications in production for split die

• Many designs for HBM + logic under investigation with production expected in 2022-23

• Advantages of fan-out on substrate technology
 – Lower cost than Si interposer
 – Potential for larger size packages than with Si interposer because there is less warpage
 – RDL with polyimide has CTE closer to that of the package substrate, resulting in lower residual stress at the package level
ASE’s FOCoS (Fan-Out Chip on Substrate)

- **Applications include network switch, GPU, AI**
 - In production since 2016 for split die for network switch
- **ASE chip first or chip last**
 - 2µm L/S
 - Up to 4 RDLs

Source: ASE.
Amkor’s Substrate-SWIFT®

- Amkor’s chip last FO version
 - 2µm L/S
 - 4 RDLs qualified
 - 6 RDLs to be qualified by end of 2021

Images courtesy of Amkor Technology, Inc.
Why Embedded Bridge Solutions?

• **Advantages of embedded bridge technology**
 - Only use high-density connection where required
 - Potential for lower cost with reduced number of RDLs with FO RDL versions
 - Improved electrical performance

• **Many companies offer embedded bridge solutions**
 - Amkor (embedded in RDL, chip last)
 - ASE (embedded in RDL, chip last)
 - IBM (embedded in laminate substrate trench)
 - Intel (embedded in laminate substrate)
 - SPIL (embedded in RDL, chip last)
 - TSMC (embedded in RDL for FO, embedded with Si interposer-CoWoS)

Intel’s Embedded Multi-die Interconnect Bridge (EMIB)
Intel’s Embedded Multi-die Interconnect Bridge (EMIB)

- A small silicon bridge chip is embedded into the package (no TSVs) to provide in-package, high-density connection
 - Micro bumps on chips, communication between chips through bridge die
 - Bridge die, designed and fabricated by Intel, embedded in the laminate substrate by substrate supplier
- Provides a high-density localized interconnect between the FPGA and HBM, density ranges from 250 to 1,000 IO/mm/layer
- Applications include FPGA, discrete GPU, AI, server, and other data center HPC segments

Source: Intel.

Source: TechInsights.
IBM Direct Bonded Heterogeneous Integration (DBHi) Si Bridge

Source: IBM.
• SPIL has qualified a fan-out embedded bridge (FO-EB) RDL test vehicle
 – Microbumps used to connect each die to RDL
 – C4 bumps connect to next level
• FO-EB targeted for CPU + HBM, GPU, and networking
R-Cube is RDL interposer for logic + HBM
- Up to 4 layers have been fabricated
- The 8mm x 12mm HBM2 has a 55µm minimum pitch
- Test vehicle package is 55 mm x 55 mm
TSMC InFO System on Integrated Substrate (SoIS)

- High-density heterogeneous package using an RDL interposer with up to 6 interconnection layers
 - Alternative to large, high-density substrates where yield and power consumption are challenges
- Good electrical performance (large eye height, low jitter, and almost no layer-to-layer crosstalk), lower insertion loss

Source: TSMC.
New Era of Semiconductor Packaging

• Chiplets will be a key enabler for next 10-20 years

Source: Overclock3d.net.
Die Size Growth: Major Driver for Adoption of Chiplets

• Die sizes continued to increase over time for server CPU and GPU
 – nVIDIA’s 826 mm2 die, fabricated at TSMC, is one of the largest in production today
 – Samsung reports die sizes of 750 mm2

• Performance requires more transistors, but industry needs a new, more economical approach
 – Smart packaging, including heterogeneous integration and chiplets becomes the answer

Source: AMD internal analysis.
Many Drivers for Chiplet Adoption

- Disaggregation benefits include optimization node per chiplet
- Improved power efficiency (goal of 0.5pJ/bit)
- Smaller die + higher yield (more die per wafer) allow optimized cost per chiplet
- Finer bump or pad pitch = higher density

- Chiplets can be binned and speed sorted, allowing optimal performance and sale of more chiplets
- Mix and match new SKUs
- Stitch together to create >1X reticle products
How Do We Define Chiplets?

- A chiplet is an integrated circuit block specifically designed to work with other chiplets to form a larger more complex system that often makes use of reusable IP blocks
 - A chiplet can be created by partitioning a die into functions that are more cost effectively fabricated (smaller die, higher yield, and less advanced nodes)
 - A chiplet is a hard IP block
 - Functions with other chiplets, so design must be co-optimized and silicon cannot be designed in isolation
 - Made possible by communication using chiplet interface (proprietary today)
- Differs from SiP or traditional MCM in that it is a new design, not just a combination of different “off-the-shelf” chips
- Chiplet is not the package, it’s the design philosophy
 - Change from “silicon centric thinking” to “system-level planning” and “co-design of IC and package”
 - The industry has to think about chip design in a new way
 - Same impact as when the industry moved from a peripheral chip layout to area array!
AMD Multiple Chiplet Product Introductions

- Multiple generations of desktop and server products using chiplets with organic substrate
 - Split out analog functions from advanced 7nm logic
 - Chiplets can be binned and speed-sorted before assembly on the substrate
 - Better memory access
 - Minimize local latency
 - Power efficiency improvement
 - 1, 2, 4 or 8 CPU chiplets plus an I/O chiplet are attached to an organic interposer

TSMC InFO_oS for Chiplets

- **Targets AI, network system, edge computing**
 - Alternative to the laminate MCM package for chiplets

- **FO process is a chip-first process**
 - Allows interconnect formation after wafer molding
 - Multiple layer RDL acts as a stress-buffer layer, so ELK stress is not a major concern
 - Process optimized to reduce warpage

- **Demonstration of 2.5x reticle of fan-out (51mm x 42mm) on a 110mm x 110mm substrate**
 - Test vehicle that integrates 10 chiplets (2 logic + 8 I/O die)
 - 5 RDLs (4 with 2/2µm, 1 with 5/5 µm)
 - D2D I/O pitch 36 µm

Source: TSMC.
Intel Foveros Technology

- Intel’s Foveros technology die are stacked in 3D
 - Base die, using less advanced node, can include power management features, voltage regulators, DC/DC converters

- Benefits include
 - Reduced voltage drop
 - Power efficiency
 - More immediate power delivery to the CPU cores
 - Elimination of passives on substrate
 - System-wide communication across multiple chiplets/dice vs. the limited die-to-die communication capability enabled by passive Si interposers

- Used in the Samsung Galaxy Book S (Mobile PC)
 - Longer lasting battery
 - No fan
 - Very thin package, allows thin product

Intel’s Lakefield CPU
- 10nm CPU
- 22nm Base die

Source: Intel.
Intel’s Sapphire Rapids will be Intel’s first CPU server for data centers using chiplets

- All 4 chiplet die will access shared cache and are connected using the modular die fabric (MDF)
- Any core can talk to other cores on the 4 die and access the shared cache across all 4 quadrants as well as I/O across 4 quadrants

Source: Intel.
Intel Co-EMIB (EMIB + Foveros)

- EMIB and Foveros can be combined to provide a high-density solution
 - Connecting HBM and logic with silicon bridge

- Intel’s data center GPU with 2 large GPU 3D center tiles (Foveros), 8 HBM stacks and 2 additional chips each connected using EMIB

Source: Intel.
Samsung Announces Availability of its Silicon-Proven 3D IC Technology for High-Performance Applications

- Samsung introduction of logic and memory stack
- First version with µbump connections

Source: Samsung.
• First commercial products with SoIC expected in 2021
• Commercial products with up to 10 chiplets expected in 2-3 years
• Advanced silicon nodes of 7nm or 5nm could be used
• SoIC could be placed next to HBM on RDL substrate or SoIC could be mounted next to HBM on CoWoS
SoIC™ Compared to 2.5D and 3D IC

<table>
<thead>
<tr>
<th>Technology</th>
<th>2.5D</th>
<th>3D-IC</th>
<th>SoIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure cross-section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interconnect</td>
<td>μbump + BEOL</td>
<td>μbump</td>
<td>SoIC bond</td>
</tr>
<tr>
<td>Chip Distance</td>
<td>~100 µm</td>
<td>~30 µm</td>
<td>0</td>
</tr>
<tr>
<td>Bond-pad Pitch</td>
<td>36µm (1.0X)</td>
<td>36µm (1.0X)</td>
<td>9µm (0.25X)</td>
</tr>
<tr>
<td>Speed</td>
<td>0.01X</td>
<td>1.0X</td>
<td>11.9X</td>
</tr>
<tr>
<td>Bandwidth Density</td>
<td>0.01X</td>
<td>1.0X</td>
<td>191.0X</td>
</tr>
<tr>
<td>Power Efficiency (Energy/bit)</td>
<td>22.9X</td>
<td>1.0X</td>
<td>0.05X</td>
</tr>
</tbody>
</table>

Source: TSMC.

- With SoIC there is virtually no distance between integrated chips, and a very small bond-pad pitch of 9 µm provides good scalability.
- Using a bumpless bonding process is critical to improvements in performance, power, resistance, and capacitance (lower inductance and thermal resistance).
AMD’s 3D Chiplet

- AMD’s Prototype 5900X chip for gaming
 - Gaming performance improvement
- Same 7nm node as RYZEN, but performance gains using 3D chiplet copper-to-copper hybrid bond

Source: AMD.
Many Package Options: Which One Do I Choose?

Routing density requirements

- Power efficiency and power delivery
- Maturity of technology
- Supply chain
- Thermal performance needs
- Test considerations
- Relative cost vs. alternatives
- Product life and reliability requirements

3D with µbumps

- Source: Samsung.

3D with hybrid bond

- Source: TSMC.

Fan-Out on Substrate

- Source: ASE.

Embedded Silicon Bridge

- Source: Intel.

Silicon Interposer

- Source: Xilinx.

Fan-Out on Substrate

- Source: Nvidia.
Thank you!

TechSearch International, Inc.
4801 Spicewood Springs Road, Suite 150
Austin, Texas 78759 USA
+1.512.372.8887
tsi@techsearchinc.com

RELEVANT, ACCURATE, TIMELY