



# DL training and inference optimization library towards speed and scale

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Reza Yazdani Aminabadi, Elton Zheng, Minjia Zhang, Niranjan Uma Naresh, Shaden Smith, Ammar Ahmad Awan, Conglong Li, Cheng Li, Zhewei Yao, Jeffrey Zhu, Yuxiong He

# DL System Challenges and Capability

### Challenges

- Too slow to train high-quality models on massive data
  - More hardware ≠ higher throughput, bigger model
  - Higher throughput ≠ better accuracy, faster convergence
  - Better techniques ≠ handy to use
- Less data / smaller models, tradeoff accuracy for training time
- Slow and expensive to deploy the models

### **Desired Capability of DeepSpeed**

- Efficiency: Efficient use of hardware for high throughput and scalability
- Effectiveness: High accuracy and fast convergence, lowering cost
- Easy to use: Improve development productivity of model scientists

## DL Training and Inference Optimization: DeepSpeed

### Bert - Original

# Construct distributed model
model = BertMultiTask(...)
model = DistributedDataParallel(model)

# Construct FP16 optimizer
optimizer = FusedAdam(model\_parameters, ...)
optimizer = FP16\_Optimizer(optimizer, ...)

# Forward pass
loss = model(batch)

 $\mathbf{x}_{i} \in \mathbf{x}_{i}$ 

# Backward pass
optimizer.backward(loss)

# Parameter update
optimizer.step()

### Bert – w. DeepSpeed

# Construct Bert model
model = BertMultiTask(...)

# Wrap to get distributed model and FP16 optimizer
model, optimizer, \_, \_ = deepspeed.initialize(
 args=args,
 model=model,
 model\_parameters=model\_parameters,
 ...
)

# Forward pass
loss = model(batch)

# Backward pass
model.backward(loss)

# Paramter update
model.step()

DL Models

DL Optimizations (DeepSpeed)

DL Framework (e.g., PyTorch, TensorFlow)

DL Infrastructure (e.g., AML, Singularity, ITP, MPI-based platforms)

> Hardware (e.g., GPU/CPU clusters)

> > Minimal code change Efficiency + Effectiveness Speed + Scale

### DeepSpeed https://github.com/microsoft/DeepSpeed

### **Model Scale**

• 10 Trillion parameters

### Speed

• Fast & scalable training

### **Democratize AI**

• Bigger & faster for all

# Compressed TrainingBoosted efficiency

### **Accelerated inference**

• Up to 6x faster & cheaper

### Usability

### System capability to efficiently train models with 20 trillion parameters



**Model Scale** 

• 10 Trillion parameters

• Up to 6x faster & cheaper

• Few lines of code changes

**Usability** 

### DeepSpeed key technologies:

- ZeRO: Zero Redundancy Optimizer
- 3D parallelism : data parallelism, pipeline, and model parallelism
- ZeRO-Infinity

# Fastest Transformer Kernels

| #Devices        | Source    | Training Time |
|-----------------|-----------|---------------|
| 256 V100 GPUs   | Nvidia    | 236 mins      |
| 256 V100 GPUs   | DeepSpeed | 144 mins      |
| 1024 TPU3 chips | Google    | 76 mins       |
| 1024 V100 GPUs  | Nvidia    | 67 mins       |
| 1024 V100 GPUs  | DeepSpeed | 44 mins       |

Scalable distributed training through ZeRO-powered DP

Superlinear speedup with increasing #GPUs

#### 30 ----- Measured Throughput 25 ----- Perfect Linear Scaling (ref.) Throughput (PFLOPs) 0 12 05 5 0 128 192 256 320 384 512 64 448 Number of V100 GPUs

Model Scale10 Trillion parameters

# SpeedFast & scalable training

### Democratize Al

Bigger & faster for all

### **Compressed Training**

Boosted efficiency

### **Accelerated inference**

• Up to 6x faster & cheaper

### Usability

• Few lines of code changes

### DeepSpeed key technologies

- Efficiency: ZeRO, ultra-fast GPU kernels, IO/compute/communication overlapping
- Effectiveness: Advance HP tuning, large-batch scaling

### ZeRO-Infinity: 1 Trillion model on a single GPU, 700x bigger



### **1-bit Adam**: 5x less communication, 3.5x faster training



Model Scale10 Trillion parameters

# SpeedFast & scalable training

### **Democratize Al**

Bigger & faster for all

### Compressed Training

### Accelerated inference

• Up to 6x faster & cheaper

### Usability

• Sparse attention: 10x longer seq, up to 6x faster



Model Scale10 Trillion parameters

# SpeedFast & scalable training

### **Democratize Al**

Bigger & faster for all

### **Compressed Training**

• Boosted efficiency

### **Accelerated inference**

• Up to 6x faster & cheaper

### Usability

- Progressive Layer Drop: Compressed robust training
- 24% faster when training the same number of samples
- 2.5X faster to get similar accuracy on downstream tasks



### Accelerated inference for large-scale transformer models Up to 6x faster and cheaper



### DeepSpeed key inference technologies:

- Inference-adapted parallelism
- Inference optimized CUDA kernels
- Effective quantize-aware training and efficient quantized kernels

Model Scale10 Trillion parameters

### Speed

Fast & scalable training

### Democratize Al

Bigger & faster for all

### **Compressed Training**

Boosted efficiency

### **Accelerated inference**

• Up to 6x faster & cheaper

### Usability

- Only few lines of code changes to enable DeepSpeed on PyTorch models
- Scalable and convenient data parallelism





# SpeedFast & scalable training

### Democratize Al

Bigger & faster for all

### Infrastructure agnostic, supporting AzureML, Azure VMs, local-nodes

 <u>HuggingFace</u> and <u>PyTorch Lightning</u> integrate DeepSpeed as a performanceoptimized backend



- deepspeed examples/pytorch/translation/run\_translation.py \
- -- deepspeed tests/ deepspeed /ds\_config\_zero3.json \
- --model\_name\_or\_path t5-small --per\_device\_train\_batch\_size 1
- --output\_dir output\_dir --overwrite\_output\_dir --fp16 \



trainer = Trainer(gpus=4, plugins='deepspeed', precision=16)

deepspeed.py hosted with 💙 by GitHub

### **Compressed Training**

• Boosted efficiency

### **Accelerated inference**

• Up to 6x faster & cheaper

### Usability

view raw

# ZeRO-Infinity

Breaking GPU Memory Wall for DL Training

# Large model training landscape today

- GPU Memory Wall
  - 1T (10T) params: 800 (8K) V100 GPUs
  - How do we support the growth in model size?
- Accessibility to large model training
  - 256 GPUs to fine-tune GPT-3
  - Limited access to such resources
- Model code refactoring
  - Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
  - Painful and error prone



# Redefining the landscape with ZeRO-Infinity

- Beyond GPU Memory
  - 50x larger models
  - 32T params on 512 GPUs (instead of 25K)
- Broader access to large model training
  - GPT-3 sized fine-tuning on a single node/GPU (instead of 16 nodes)
- Excellent Throughput and Scalability
  - Comparable to 3D-parallelism
- Ease of Use
  - No model refactoring necessary







# Beyond the GPU Memory

- Modern clusters have heterogeneous memory systems.
- GPU memory comprises a small fraction
- ZeRO-Infinity leverages GPU/CPU/NVMe memory
  - 32T params on 32 nodes
  - 1T params on a single node
- GPT-3 can be fine-tuned on a single node

### Memory available on a Single DGX-2 Node





# Bandwidth Requirements



(a) Parameter and Gradient Bandwidth

(b) Optimizer States bandwidth

(c) Activation Checkpoint Bandwidth

Figure 3: Impact of bandwidth on efficiency assuming an accelerator with 70 TFlops of single GPU peak achievable throughput.

# ZeRO-Infinity Architecture



# Evaluation



(a) ZeRO-Infinity efficiently trains 40x larger models than 3D parallelism on 512 GPUs.

(b) ZeRO-Infinity exceeds linear scaling from 64 to 512 GPUs for a 1T parameter model.

(c) ZeRO-Infinity can train up to 1T model on a DGX-2 node without model parallelism.

Figure 5: Efficiency and scalability of ZeRO-Infinity for training multi-trillion parameter models.

## ZeRO-Infinity in a nutshell

