
Tutorial: Deep Learning
Inference Optimizations for

CPU
Guokai Ma

Intel

Notices & Disclaimers

● Performance varies by use, configuration and other factors. Learn more

at www.Intel.com/PerformanceIndex.
● Performance results are based on testing as of dates shown in configurations and may

not reflect all publicly available updates. See backup for configuration details. No

product or component can be absolutely secure.

● Your costs and results may vary.

● Intel technologies may require enabled hardware, software or service activation.

● © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Other names and brands may be claimed as the

property of others.

http://www.intel.com/PerformanceIndex

Agenda

● Deep learning inference system
● Deep learning inference optimizations

Deep learning inference system

Model

Checkpoint

Optimization

Fusion
Low

precision
Vectorize …

Optimized

model

Query

SUT

Load balance

Batching

Warmup

Multi-instance Result

loadgen

Model implementation

https://github.com/mlcommons/inference/tree/master/loadg

en#integration-example-and-flow

Deep learning inference system

Model

Checkpoint

Optimization

Fusion
Low

precision
Vectorize …

Optimized

model

Query

SUT

Load balance

Batching

Warmup

Multi-instance Result

loadgen

Model implementation

https://github.com/mlcommons/inference/tree/master/loadg

en#integration-example-and-flow

Deep learning inference system

Model

Checkpoint

Optimization

Fusion
Low

precision
Vectorize …

Optimized

model

Query

SUT

Load balance

Batching

Warmup

Multi-instance Result

loadgen

Model implementation

https://github.com/mlcommons/inference/tree/master/loadg

en#integration-example-and-flow

Deep learning inference system

Model

Checkpoint

Optimization

Fusion
Low

precision
Vectorize …

Optimized

model

Query

SUT

Load balance

Batching

Warmup

Multi-instance Result

loadgen

Model implementation

https://github.com/mlcommons/inference/tree/master/loadg

en#integration-example-and-flow

Deep learning inference system

● Offline inference scenario – Throughput
 All samples a packed into a single query, throughput of SUT is measured

● Server inference scenario – Throughput under latency bound
 Samples are sent from loadgen with random interval. SUT needs to ensure 99% of the

samples are respond within latency bound
 Throughput of SUT is measured

8

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Multi-instance inference

ProcessorProcessor
ProcessorProcessor

Core Core

L2 L2

L3 cache

Memory

Multi-instance inference

Core Core

L2 L2

L3 cache

ProcessorProcessor
ProcessorProcessor

Multi-instance inference

Core Core

L2 L2

L3 cache

ProcessorProcessor
ProcessorProcessor

Multi-instance inference

Core Core

L2 L2

L3 cache

ProcessorProcessor
ProcessorProcessor

Multi-instance inference

● Multi-instance inference allows us to control CPU computation resource in a fine grain

manner

● Few cores per instance:
 Reduce synchronization overhead
 Increase parallelism for serial part of model
 Ideal when activation can fully fit in L2 cache

● Instance must be bound to specific set of cores
 numactl
 taskset
 OMP_NUM_THREADS
 KMP_AFFINITY

Multi-instance inference

● Multi-instance inference allows us to control CPU computation resource in a fine grain

manner

● Few cores per instance:
 Reduce synchronization overhead
 Increase parallelism for serial part of model
 Ideal when activation can fully fit in L2 cache

● Instance must be bound to specific set of cores
 numactl
 taskset
 OMP_NUM_THREADS
 KMP_AFFINITY

Workload Cores per instance Weight sharing (experimental)

DLRM 7 Yes

RNN-T 1 No

BERT 8 No

MiniGo (selfplay) 1 No

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Warmup

● Allows primitives to be created at SUT initialization

● Workload with variable input size may need large primitive cache
 BERT
 DLRM
 RNNT

● Need to ‘sweep’ input size from smallest to largest input size

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Batching – reduce padding

● Sort all inputs in offline queue according to input size, from largest input size to smallest

input size

● Pad batch inputs to the largest input size in the batch

20

Constant batching

● DLRM: ensure the total number of user-item pairs is constant per batch (constant

batching)

● E.g. DLRM has input with 100, 200, 300, 400, 500, 600, 700 data points

● A constant batching scheme could be:
 100: BS=420,000/100
 200: BS=420,000/200
 300: BS=420,000/300
 400: BS=420,000/400
 500: BS=420,000/500
 600: BS=420,000/600
 700: BS=420,000/700

21

Dynamic batching

○ Select the right batch size for the input shape

○ E.g. one-time calibration step on different BERT input shapes to get seqlenBS lookup

table

○ Batching according to seqlenBS lookup table from calibration step

22

Deep learning inference optimizations

● SUT (loadgen bridge)
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Op fusion

-> 40% memory access reduction

Left: 10

memory

accesses and

2 quantization

ops

Right: 6 memory

accesses and 1

quantization op
https://www.intel.com/content/www/us/

en/artificial-intelligence/posts/3rd-gen-

xeon-mlperf-performance-gains.html
BERT-Large quantized: 1-node, 2x Intel Xeon Platinum

8380 processor on Coyote Pass with 1 TB (16 slots/

64GB/3200) total DDR4 memory, ucode 0x8d05a260, HT

on, Turbo on, Ubuntu 20.04.2 LTS, 5.4.0-66-generic.

Baseline model

source: https://github.com/mlcommons/inference/tree/maste

r/language/bert. The steps to reproduce the optimized

model is

at: https://github.com/mlcommons/submissions_inference_1

_0/tree/master/closed/Intel/code/bert-99/mxnet . Test by
Intel on 3/16/2021.

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/3rd-gen-xeon-mlperf-performance-gains.html
https://github.com/mlcommons/inference/tree/master/language/bert
https://github.com/mlcommons/submissions_inference_1_0/tree/master/closed/Intel/code/bert-99/mxnet

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Low precision inference

● Dedicated low precision computing unit provide higher computation throughput than

FP32

● 8bit (int8)

● 16 bit (FP16, BF16)

● Low precision is common practice of MLPerf inference workloads:

27

ResNet50 SSD-RN34 3DUNet BERT DLRM RNN-T

Int8 Int8 Int8 Int8 Int8 Int8 encoder+16bit decoder

Lowest precision had been used by submitters in MLPerf inference v1.0, closed division

https://mlcommons.org/en/inference-datacenter-10/

https://mlcommons.org/en/inference-datacenter-10/

Common low precision (int8) flow

1. Calibration – find out the range/distribution of each activation tensor
 Calibration dataset – a dataset sampled from train dataset

2. Quantization configuration – decide quantization scale/zero-point from calibration

range/distribution
 Min-max quantization
 KL-divergence quantization
 Per tensor/per channel scale/zero-point

3. Quantize model weights offline or during model checkpoint loading

4. Quantize activation when input is FP32 and next op expect int8 activation

5. Dequantize activation when output is int8 and next op expect FP32 activation

6. Chain int8 op as much as possible – saves dequantization/quantization overhead

* 3,4,5 might be done automatically depending on the framework/inference engine

28

Low Precision Inference

The Intel DL Boost

AVX512_VNNI VPDPBUSD

instruction enables 8-bit

multiplies with 32-bit accumulates

with 1 instruction u8×s8→s32
providing a theoretical peak

compute gain of 4x int8 OPS

over fp32. Image credit to Israel

Hirsh.

Source: https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-

inference-and-training.html?

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Sparsity

● Tile-based sparsity: blocks of consecutive zeros and non-zeros

● Training with sparsity:

 magnitude-based pruning

 99% sparsity ratio for the sparse General Matrix Multiplications (GEMMs)
● MLPerf DLRM benchmark: 0.93% accuracy loss &1.4X performance gain

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/3rd-gen-xeon-mlperf-

performance-gains.html
Baseline FP32 DLRM dense model
source: https://github.com/mlcommons/inference/tree/master/recommendation/dlrm/pytorch Optimized.FP32 DLRM sparse
model reproductions steps can be found
at https://github.com/mlcommons/submissions_inference_1_0/tree/master/open/Intel/code/dlrm-99 (link active on 4/21). Both
the dense model and the sparse DLRM model are tested on the same hardware with the server scenario: 1-node, 2x Intel
Xeon Platinum 8380 processor on Coyote Pass with 1 TB (16 slots/ 64GB/3200) total DDR4 memory, ucode 0x8d05a260, HT
on, Turbo on, Ubuntu 20.04.2 LTS, 5.4.0-66-generic. Please see the additional hardware and framework detail in v1.0
Inference Open DLRM-99, entry Inf-1.0-67. https://mlcommons.org/en/inference-datacenter-10/. Test by Intel on 03/18/2021.

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/3rd-gen-xeon-mlperf-performance-gains.html
https://github.com/mlcommons/inference/tree/master/recommendation/dlrm/pytorch
https://github.com/mlcommons/submissions_inference_1_0/tree/master/open/Intel/code/dlrm-99
https://mlcommons.org/en/inference-datacenter-10/

Deep learning inference optimizations

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

RNN-T inference -- vectorize greedy decoder

● Speech recognition task

● Inference contains three steps
 Wave to input feature

 Encoder

 Greedy decoder

● Greedy decoder has low efficiency
 control flow amongst tensor operation

 Single batch single time step LSTM

Sound wav input

Preprocessing

LSTM encoder

Greedy decoder

“Hello, world!”

RNN-T inference -- vectorize greedy decoder

Batch greedy decoder in RNN-T: 3.3X overall performance gain vs. sequential greedy decoder

HW used to measure performance gain can be found in the following link
(https://www.intel.com/content/www/us/en/artificial-intelligence/posts/3rd-gen-xeon-mlperf-performance-gains.html)

The relative performance

profiling experiments are done

with 1-node, 4x Intel Xeon

Platinum 8380H processor on

Cedar Island with 1.6 TB (24

slots/ 64GB/3200) total DDR4

memory, ucode 0x700001e,

HT on, Turbo on, Ubuntu

20.04.2 LTS, 5.4.0-66-generic,

PyTorch v1.5.0-rc3, BS 384.

We submitted the optimized

version using “BF16 encoder
and BF16 batch greedy

decoder” to MLPerf with a
different 1-node, 8x Intel Xeon

Platinum 8380H processor

with more details at the

entry MLPerf v1.0 Inference

Closed RNN-T, entry Inf-1.0-

20.

https://mlcommons.org/en/infe

rence-datacenter-10/. Test by
Intel on 03/18/2021.

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/3rd-gen-xeon-mlperf-performance-gains.html

Summary

● SUT
 Multi-instance

 Warmup

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion

 Low precision

 Sparsity

 Vectorize

Summary

● SUT
 Multi-instance (CPU)

 Warmup (generic)

 Batching

■ Reduce padding

■ Dynamic batching

■ Constant batching

● Framework/Model
 Op fusion (generic)

 Low precision (generic)

 Sparsity (CPU)

 Vectorize (CPU)

Q & A

