GRAFHCORE

SW/HW CO-OPTIMIZATION ON THE IPU: AN MLPERF™ CASE STUDY

Dr. Mario Michael Krell

OUTLINE

- Introduction
- Packed BERT
- Parallelism and recomputation
- Other features
- Conclusion

INTRODUCTION

Reg 1

CONSTR.

Res 1

A CONTRACTOR OF THE OWNER

6

RAISING THE BAR: GRAPHCORE'S FIRST MLPERF[™] RESULTS

MLPerf v1.0 Training Results | MLPerf ID: 1.0-1025, 1.0-1026, 1.0-1027, 1.0-1028, 1.0-1098, 1.0-1099 The MLPerf name and logo are trademarks. See <u>www.mlperf.org</u> for more information

^DC

Massively • parallel MIMD

<u>MK2 GC200</u>

IPU

Supports •

PCle

- FP32, •
- FP16, and •
- FP16 with • stochastic rounding

IPU-Machine: M2000

4 x Colossus™ GC200 IPU 1 petaFLOPS AI compute Up to 526GB Exchange Memory™ 2.8Tbps IPU-Fabric™

Each Colossus™ GC200 IPU

59.4Bn transistors, TSMC 7nm @ 823mm2 250 teraFLOPS AI compute 1472 independent processor cores 8832 separate parallel threads

Arm Cortex-A guad-core SoC Super low latency IPU-Fabric™ interconnec

M.2 Connector

PCIe FH3/4L G4x8 Slot (RNIC/SmartNIC)

DDR4 DIMM DRAM x 2

gc For model states streaming

disaggregated architecture for host vs. IPU resources Sixteen M2000s TTT TH TT

Network-based

eMMC 32G Flash device

Left: <u>https://www.graphcore.ai/hubfs/IPU-M%20SVG_2.svg</u> Right: https://docs.graphcore.ai/projects/ipu-pod64-datasheet/en/latest/_static/GC-000477-DS-6-IPU-POD64-datasheet.pdf

MORE DETAILS ON HARDWARE?

Visit presentation by Graphcore CTO Simon Knowles on Tuesday or visit <u>our webpage</u>

OUR MLPERFTM IMPLEMENTATION: FULL STACK SOFTWARE/HARDWARE CO-OPTIMIZATION

- Algorithm: packed BERT
- Software: Parallelism + Recompute
- Hardware: FP16 + stochastic rounding, low batch size

ALGORITHMIC IMPROVEMENT: TOWARDS PACKED BERT

MOTIVATION (MODEL) • BERT

- Transformer based model
- Bidirectional encoder with selfattention
- Efficient use of ALU on the HW requires
 - Batching
 - Padding to same length
- Trade-off: wasted compute for speed-up from the parallelism
- How much compute are we actually wasting?

MOTIVATION (DATA)

- Wikipedia
- SQUaD 1.1

• GLUE

SOLUTION

Packing in three core steps:

- 1. Pack the data
- 2. Adjust the model
- 3. Adjust the hyperparameters

PACKING

SPFHP video from: https://towardsdatascience.com/introducing-packed-bert-for-2x-faster-training-in-natural-language-processing-eadb749962b1

- Packing N sequences is an NP hard problem even when combining 3 sequences
- Impossible on raw sequences -> use histogram of sequences
- Online shortest-pack-first histogram-packing (SPFHP)
- Offline Non-negative least-squares histogram-packing (NNLSHP) 13

ADJUSTING THE MODEL

Mandatory: Masking attention

```
1 mask = np.array([[1, 1, 1, 2, 2]]) # input
2 zero_one_mask = tf.equal(mask, mask.T) # 0, 1 mask
3 # for use with softmax:
4 softmax_mask = tf.where(zero_one_mask, 0, -1000)
```

Mandatory: Adjust positional encoding

Optional: Vectorized unpacking for sequence based evaluation like NSP

ADJUSTING HYPERPARAMETERS

LAMB

- Standard optimizer used in BERT
- Calculates weighted moments m and v Compute $g_t = \frac{1}{|S_t|} \sum_{s_t \in S_t} \nabla \ell(x_t, s_t)$. $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$
- weights for moments power-dependent on packing factor p

$$\beta_1 := \beta_1^p, \, \beta_2 := \beta_2^p$$

PACKED BERT EXPERIMENTS

EXPERIMENTS: PACKING WIKIPEDIA packing												
pack.	pack.	# packs	efficiency	pack.	overhead	realized						
depth	algo.	[M]	(%)	factor	(%)	speed-up						
1	none	16.280	49.97	1.000	0.000	1.000						
2	SPFHP	10.102	80.52	1.612	4.283	1.544						
3	SPFHP	9.095	89.44	1.790	4.287	1.716						
3	NNLSHP	8.155	99.75	1.996	4.287	1.913						
4	SPFHP	8.659	93.94	1.880	4.294	1.803						
8	SPFHP	8.225	98.90	1.979	4.481	1.895						
16/max	SPFHP	8.168	99.60	1.993	4.477	1.905						

SO, DO WE GET THE DESIRED 2X SPEED-UP?

Yes!

- FLOPS only reduced by a factor of 1.913,
- Less overhead of IO
- This leads to an additional speed-up which pushes us >2x

Plot shows runtime compared to packedBERT Original is around 2x slower

ANY QUESTIONS ON PACKING?

- Read the blog and the paper
 - <u>https://towardsdatascience.com/introducing-packed-bert-for-2x-faster-training-in-natural-language-processing-eadb749962b1</u>
 - https://arxiv.org/pdf/2107.02027.pdf

HYBRID MODEL- AND DATA PARALLELISM + RECOMPUTATION

HOST DISAGGREGATION

- BERT is not host bound
 - 1 host even for 64 IPUs
 - Power and cost savings
 - Combines model and data parallelism for job distribution
 - 1 M2000 for POD 16 setup

PIPELINE MODEL PARALLELISM FOR BERT (FORWARD PASS)

ြိုင

Note: To save memory, we recompute the local forward passes F1, F2, F3 as part of the backward passes B1, B2, B3.

HYBRID DATA-MODEL PARALLELISM WITH BERT

Images: https://www.graphcore.ai/posts/bert-large-training-on-the-ipu-explained

REPLICATED TENSOR SHARDING (RTS)

- Reduce overall memory footprint
- Can be combined with variable offloading to streaming memory
- Path for even larger models

25

OTHER FEATURES

65

A COLOR OF COLOR

LOW BATCH SIZE TRAINING

- Large local batch size requires storing plenty of unused activations
- LBS 2 for BERT
- Gradient accumulation for larger global batch size to save update costs

LOW PRECISION TRAINING

- FP16
- Stochastic rounding
- Weight aggregation in FP32
- Master weights in FP16
- LAMB moments in FP16 (streamed from DRAM on demand)

RESNET 50 SETUP

BATCH SIZE & DISTRIBUTION

- Single IPU data parallel setup with 1-4 hosts
- Introduced convenient recomputation API in our TensorFlow 1.15 framework to boost BS to 20

DISTRIBUTED BATCH NORM

- Batch norm requires statistics of at least 32 samples
- We combine data from 2 IPUs for a sufficient batch of 40 samples
- Simple configuration variable assignment

CONCLUSION

- Several SW strategies applied for amazing performance
- Strategies not benchmark specific: Generalize to variety of models/datasets
- Intuitive support of hybrid data- and model-parallel training including recomputation in TensorFlow, PyTorch, and our own Poplar Advanced Run Time (PopART)
- Try PackedBERT!

The MLPerf name and logo are trademarks. See www.mlperf.org for more information

30

Looking for new applications! THANK YOU We are hiring!

Dr. Mario Michael Krell

EXPERIMENTS: PACKING SQUAD I.I

pack.	pack.	# strat.	# packs	# tokens	# padding	efficiency	pack.
depth	algo.	used			tokens	(%)	factor
1	none	348	88641	34038144	18788665	44.801	1.000
2	SPFHP	348	45335	17408640	2159161	87.597	1.955
3	NNLSHP	398	40808	15670272	420793	97.310	2.172
3/max	SPFHP	344	40711	15633024	383545	97.547	2.177

