AI Scale at the Modern Era

Carole-Jean Wu & Niket Agarwal

FACEBOOK AI

A Virtuous Cycle

Machine Learning at Facebook

- Machine learning is used extensively
 - Ranking posts
 - Content understanding
 - Object detection, segmentation, and tracking
 - Speech recognition/translation
- From data centers to the edge

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Hazelwood et al. HPCA-2018.

Keypoints Segmentation Augmented Reality with Smart Camera

Machine Learning Execution Flow

Data Scale at Facebook (and elsewhere)

Diversity in DL Use Cases

Must not over-design for GEMM nor convolutions

Flexibility requires generality

Training Data and Feature Growth for Recommender Systems

Data Storage Growth

Training data for recommendation models has grown by 1.75x in 2 years

Model Memory Growth

Size of Facebook's production recommendations models has grown by an order of magnitude in 3 years²

¹ "Understanding and Co-designing the Data Ingestion Pipeline for Industry-Scale RecSys Training" M. Zhao et al. arXiv-2021. ² "Understanding Capacity-Driven Scale-Out Neural Recommendation Inference" M. Lui et. al. ISPASS-2021.

ML Trends

Data explosion

Freshness & latency

Standardization

Privacy and security

Complex data models

Richer query methods

System Trends

Disaggregation

Horizontal scaling

Elastic compute

Power efficiency

Global optimization

Engineering efficiency

Machine Learning Execution Flow

Data Ingestion Pipeline

ML Training Storage growth @FB

~1.75x growth in training data *storage size* over past 2 years

thrugh the second secon

~13x growth in training data ingestion *throughput* projected over 3 years

ML Training datasets cannot be stored locally on Trainers

Model	Table Size (PB)	Partition Size (PB)	Used Partition Size (PB)
RM1	13.45	0.15	11.95
RM2	29.18	0.32	25.94
RM3	2.93	0.07	1.95

ML Training Preprocessing @FB

Modelz	kQPS	Storage RX (GB/s)	Transform RX (GB/s)	Transform TX (GB/s)	# CPU Sockets required
RM1	11.623	0.8	1.37	0.68	24.16
RM2	7.995	1.2	0.96	0.50	9.44
RM3	36.921	0.8	1.01	0.22	55.22

ML training preprocessing compute requirements exceed trainer host capabilities

Local data storage and preprocessing doesn't work for us!

Storage tier

Reader tier

Storage tier

Reader tier

Storage tier

Reader tier

Storage tier

Reader tier

Storage tier

Reader tier

Disaggregation is not enough: Training Data Ingestion Challenges

Data ingestion (Storage + Preprocessing) represents a significant, and growing, component of training capacity.

End-to-end Co-design for Data Ingestion Efficiency

Feature Flattening

• Push data filtering to storage nodes

In-Memory Flatmap

• Optimized data formats

Merged Reads

Increased disk throughput

Feature Reordering

• Mitigate unnecessary reads

Regular Map Reads

	Hive Table
Row idx	Features (map <str: int="">)</str:>
1	A: 1, B:1, C:3, D:1, E:3, F:3
2	A: 2, B:1, C:2, D:1, E:2, F:6

Feature Flattening

Hive Table	
Row idx	Features (map <str: int="">)</str:>
1	A: 1, B:1, C:3, D:1, E:3, F:3
2	A: 2, B:1, C:2, D:1, E:2, F:6

Feature Flattening + Merged Reads

Hive Table	
Row idx	Features (map <str: int="">)</str:>
1	A: 1, B:1, C:3, D:1, E:3, F:3
2	A: 2, B:1, C:2, D:1, E:2, F:6

over-reads B and C

Feature Flattening + Merged Reads + Feature Reordering

Hive Table	
Row idx	Features (map <str: int="">)</str:>
1	A: 1, B:1, C:3, D:1, E:3, F:3
2	A: 2, B:1, C:2, D:1, E:2, F:6

Training Data Efficiency Impact through co-design

2X power and cost savings for Data Ingestion

Future Opportunities: Training Data Reuse and Flash Caching

A subset of bytes (20-40%) contribute to most of Storage IO

Opportunity for Flash to absorb the IO more efficiently

Machine Learning Execution Flow

High System Diversity for ML at the Edge

The diversity of mobile hardware and software is not found in the controlled datacenter environment.

Significant In-the-Field Performance Variability

Conclusion

Ever-Increasing AI Growth

Diverse ML System Requirement Compute, Memory, Networking

Thank You

