The Nature of Graph Neural
Network Workloads



Graphs & applications

e Large: up to billions of nodes

* Many graphs are Heterogeneous

* Rich node/edge attributes
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Graphs & applications

* Many small graphs
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One graph has 100-1000 nodes, but there are many graphs.



Graph Neural Network

A family of (deep) neural networks that learn node,
edge, and graph embeddings.
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How do GNNs work?

captures task-specific information.

nodes and edges.

An ego-network around each node is used to learn an embedding that
The embeddings use both the structure of the graph and the features of the

The embeddings are learned in an end-to-end fashion; thus, the predictions
are a function of the target node’s ego-network.




A general graph neural network formalism

Graph neural networks are based on message-passing

Message function

Edge-wise: m{'™)) = ¢ (X,Ef),xg), Wg)) (u,e,v) € E.

Node-wise: x{T1) =) (X_Ef), p ({mgﬂ) t(u,e,0) € 5}))

Node update aggregation

Neural Message Passing for Quantum Chemistry



https://arxiv.org/abs/1704.01212

SpMM

* Edge-wise: mgtﬂ) = xff)
* Node-wise: xétﬂ) = Z(u’e,v)eg mgtﬂ)
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Sparse-dense Matrix Multiplication



SDDMM

T
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Sampled Dense-Dense Matrix Multiplication



Generalized SoMM and SDDMM

* g-SpMM
* Edge-wise: mgtﬂ) = ¢ (xff),x,gt),wét))
* Node-wise: xétﬂ) = p({mgtﬂ): (u,e,v) € £})
e g-SDDMM
. Edge—wise:mgtﬂ) = ¢ (xl(f),xgt),we(t)) ,(u,e,v) €€



Model 1: GraphSage

Handles graphs with one node type and one edge type.
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Model 2: Graph attention networks (GAT)

Handles graphs with one node type and one edge type.

exp(LeakyReLU(a’ [Wh,||[Wh,,]))
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E = edge_softmax(E)
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Model 3: Relational graph convolution

networks (RGCN)

Handles graphs whose nodes are connected with different relations.
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M =]

src_id, dst_id, etype = g.edges|()
etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]
H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):
M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))
M = SpMM(A’, M)
H = ReLU(M)




GNN benchmark

* Graph types: | Graphtype _|GraphSize | Trainingmethod _

* Homogeneous OGBN-arxiv Homogeneous |V|[=169K, |E|=1M Full graph
* Heterogeneous OGBN-products Homogeneous |V|=2.4M, |E|=62M  Mini-batch
. MUTAG Heterogeneous |V|=27K, |E|=148K, Full graph
* Graph size: ETYPE|<50
* Small OGBN-MAG Heterogeneous |V|=1.9M, |E[=21M, Mini-batch
* Large |ETYPE|=8

* Training methods:
* Full batch training
* Mini-batch training

Benchmark framework: Deep Graph Library (DGL)



Benchmark framework:
(DGL)

* DGL provides sparse operators:
e SpMM, SDDMM
* Neighbor sampling for mini-batch
training.
* Deep learning framework provides
dense operators:
* Matrix multiplication, element-wise
operations, reduction, etc
* The benchmark uses DGL +
Pytorch.

Deep Graph Library

Deep Graph Library
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Full-graph training on small graphs

* Apply multiple layers of graph neural networks.

Hidden layer Hidden layer
Input i v . Qutput
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GraphSage full-batch training
Er N

Dataset OGBN-arxiv

Hlayers 3 Runtime of GraphSage on OGBN-arxiv
50

Hidden dimensions 256

S
o

w
o

N
o

runtime / epoch (ms)

=
o

Hardware Nvidia T4
Model size 217K
M = SpMM(A, H)/deg(A) |
H = ReLU(matmul(M, W1) + bl +
0

matmul(H, W2) + b2)
H = Dropout(H)

SpMM sgemm elemwise

Both sparse operations and dense operations have
roughly the same amount of overhead.



GAT full-batch training
e |

Dataset OGBN-arxiv Runtime of GAT on OGBN-arxiv
300
#layers 3
- 250
Hidden dimensions 256 £
< 200
#attention heads 3 3
& 150
Hardware Nvidia T4 P
£ 100
Model size 1.4M =
B
H = matmul(W, H) 0 -
El = matmuI(WI_a, H) SpMM SDDMM sgemm  elemwise  reduce

Er = matmul(Wr_a, H)
E = LeakyReLU(SDDMM(EI, Er, A))

E = edge_softmax(E) Both sparse operations and dense operations have

M = SpMM(E, H) roughly the same amount of overhead.
H = ReLU(M, W)




RGCN full-batch training

Dataset mutag
#layers 2

Hidden dimensions 256
Hardware Nvidia T4
Model size 10M
M=]

src_id, dst_id, etype = g.edges()

etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]

H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):
M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))

M = SpMM(A’, M)

H = ReLU(M)

Runtime of RGCN on MUTAG
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SpMM SDDMM copy data concat elemwise sort per-etype sort
edges matmul sparse
matrix

o

Dense operations dominate the model computation.



Mini-batch training on large graphs

* Another view of computing node embeddings.
* A mini batch represents the computation graph for target nodes.
* Small-world graphs lead to a huge computation graph.




Neighbor sampling

* Prune the computation graph:
* Sample neighbors from a neighbor list of a vertex.

10 11




Mini-batch training on GPU

* Two ways of performing mini-batch training.
* Pure GPU training: all data in GPU.

* Mixed CPU-GPU training: the whole graph data in CPU and mini-batch
computation in GPU.

* The benchmark covers pure GPU mini-batch training.



GraphSage mini-batch training

Dataset OGBN-products
#layers 2

Hidden dimensions 256

fanout 25,10

Batch size 1000

Hardware Nvidia T4
Model size 217K

M = SpMM(A, H)/deg(A)

H = ReLU(matmul(M, W1) + bl +
matmul(H, W2) + b2)

H = Dropout(H)

Runtime of mini-batch training of GraphSage on
OGBN-products
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Minibatch Minibatch
construction computation

* Mini-batch construction is very expensive;
* Dense operations are much more expensive than
sparse operations in mini-batch training.



GAT mini-batch training
e |

Dataset OGBN-products

40
#layers 3 35
Hidden dimensions 256 g 30
fanout 5,10,15 g 25
#attention heads 3 E iz
Batch size 1000 €10
Hardware Nvidia T4 ) 5
Model size 1.4M 0
H = matmul(W, H) &
El = matmul(WI_a, H) <
Er = matmul(Wr_a, H)
E = LeakyReLU(SDDMM(EI, Er, A)) *
E = edge_softmax(E)
M = SpMM(E, H) °
H = ReLU(M, W)

Runtime of mini-batch training of GAT on
OGBN-products
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Minibatch Minibatch
construction computation
Mini-batch computation of GAT is much more expensive;

mini-batch construction is relatively cheap.
Dense operations are much more expensive than
sparse operations in mini-batch training.



RGCN mini-batch training

Dataset OGBN-MAG
#layers 2

Hidden dimensions 64

Batch size 512

Fanout 25,30
Hardware Nvidia T4
Model size 309M

M =]

src_id, dst_id, etype = g.edges()

etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]

H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):
M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))

M = SpMM(A’, M)

H = ReLU(M)

Runtime of mini-batch training of RGCN
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Ssummary

* For GNN workloads, both sparse and dense operations are important.

* Training methods have large impact on GNN workloads.

* For full-graph training, both sparse and dense operations account for half of
runtime.

* For mini-batch training, runtime are more dominated by dense operations.
* Mini-batch sampling may cause significant effort during training.



