
The Nature of Graph Neural 
Network Workloads



Graphs & applications

• Large: up to billions of nodes

• Many graphs are Heterogeneous

• Rich node/edge attributes

Amazon graph Knowledge graphsSocial networks



Graphs & applications

• Many small graphs

Code graph
Chemistry compounds

One graph has 100-1000 nodes, but there are many graphs.



A family of (deep) neural networks that learn node, 

edge, and graph embeddings.

They are 

becoming 

extremely 

popular.

How do GNNs work? 

An ego-network around each node is used to learn an embedding that 

captures task-specific information.

The embeddings use both the structure of the graph and the features of the 

nodes and edges.

The embeddings are learned in an end-to-end fashion; thus, the predictions 

are a function of the target node’s ego-network.

Graph Neural Network



A general graph neural network formalism

Neural Message Passing for Quantum Chemistry

v1

v5

v2

v3
v4

h2

h3

h5

h4

Graph neural networks are based on message-passing

𝑒21
h1

5

Message function

Node update aggregation

Message passing can be expressed with two sparse operators: SpMM and SDDMM.

https://arxiv.org/abs/1704.01212


SpMM

• Edge-wise: 𝑚𝑒(𝑡+1) = 𝑥𝑢(𝑡)
• Node-wise: 𝑥𝑣(𝑡+1) =  (𝑢,𝑒,𝑣)∈ℰ𝑚𝑒(𝑡+1)

Sparse-dense Matrix Multiplication



SDDMM

• Edge-wise: 𝑚𝑒(𝑡+1) = 𝑥𝑢(𝑡)𝑥𝑣(𝑡)𝑇 , (𝑢, 𝑒, 𝑣) ∈ ℰ

Sampled Dense-Dense Matrix Multiplication



Generalized SpMM and SDDMM

• g-SpMM

• Edge-wise: 𝑚𝑒(𝑡+1) = 𝜙 𝑥𝑢𝑡 , 𝑥𝑣𝑡 , 𝑤𝑒𝑡
• Node-wise: 𝑥𝑣(𝑡+1) = 𝜌({𝑚𝑒𝑡+1 : (𝑢, 𝑒, 𝑣) ∈ ℰ})

• g-SDDMM

• Edge-wise:𝑚𝑒(𝑡+1) = 𝜙 𝑥𝑢𝑡 , 𝑥𝑣𝑡 , 𝑤𝑒𝑡 , (𝑢, 𝑒, 𝑣) ∈ ℰ



Model 1: GraphSage

𝑀𝑣𝑤(𝑙) =  
ℎ𝑤𝑙−1𝑑𝑣+1

ℎ𝑣(𝑙) = 𝜙(𝑚𝑣𝑙 𝑊1 𝑙 + ℎ𝑣(𝑙−1)𝑊2 𝑙 )
𝑚𝑣(𝑙) =  𝑤∈𝑁 𝑣 ∪{𝑣}𝑀𝑣𝑤𝑙

9

M = SpMM(A, H)/deg(A)

H = ReLU(matmul(M, W1) + b1 + 

matmul(H, W2) + b2)

H = Dropout(H)

Handles graphs with one node type and one edge type.



Model 2: Graph attention networks (GAT)

𝑀𝑣𝑤(𝑙) = 𝛼𝑣𝑤ℎ𝑤𝑙−1
ℎ𝑣(𝑙) = 𝜙(𝑚𝑣𝑙 )

𝛼𝑣𝑤 = exp(LeakyReLU(  𝑎𝑇[𝑊ℎ𝑣||𝑊ℎ𝑤])) 𝑘∈𝑁𝑣 exp(LeakyReLU(  𝑎𝑇[𝑊ℎ𝑣||𝑊ℎ𝑘]))
𝑚𝑣(𝑙) =  𝑤∈𝑁 𝑣 ∪{𝑣}𝑀𝑣𝑤𝑙

10

H = matmul(W, H)

El = matmul(Wl_a, H)

Er = matmul(Wr_a, H)

E = LeakyReLU(SDDMM(El, Er, A))

E = edge_softmax(E)

M = SpMM(E, H)

H = ReLU(M, W)

Handles graphs with one node type and one edge type.



Model 3: Relational graph convolution 
networks (RGCN)

Handles graphs whose nodes are connected with different relations.

𝑀𝑣𝑤(𝑙) = 
1𝑐𝑣,𝑟𝑊𝑟(𝑙)ℎ𝑤𝑙−1 , r is the relation of 𝑒𝑣𝑤.

ℎ𝑣(𝑙) = 𝜎(𝑚𝑣𝑙 )𝑚𝑣(𝑙) =  𝑤∈𝑁 𝑣 ∪{𝑣}𝑀𝑣𝑤𝑙
11

M = []

# Sort the edges based on the edge type

src_id, dst_id, etype = g.edges()

etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]

H = H[src_id]

# Perform per-etype matrix multiplication

H_list = split(H, etypes)

for r in range(num_relations):

M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

# Perform the final aggregation

A’ = coo_matrix((range(num_edges), dst_id))

M = SpMM(A’, M)
H = ReLU(M)



GNN benchmark

• Graph types:

• Homogeneous

• Heterogeneous

• Graph size:

• Small

• Large

• Training methods:

• Full batch training

• Mini-batch training

Graph type Graph Size Training method

OGBN-arxiv Homogeneous |V|=169K, |E|=1M Full graph

OGBN-products Homogeneous |V|=2.4M, |E|=62M Mini-batch

MUTAG Heterogeneous |V|=27K, |E|=148K, 

|ETYPE|=50

Full graph

OGBN-MAG Heterogeneous |V|=1.9M, |E|=21M, 

|ETYPE|=8

Mini-batch

Benchmark framework: Deep Graph Library (DGL)



Benchmark framework: Deep Graph Library 
(DGL)

• DGL provides sparse operators:

• SpMM, SDDMM

• Neighbor sampling for mini-batch 
training.

• Deep learning framework provides 
dense operators:

• Matrix multiplication, element-wise 
operations, reduction, etc

• The benchmark uses DGL + 
Pytorch.



Full-graph training on small graphs

• Apply multiple layers of graph neural networks.



GraphSage full-batch training
Setup

Dataset OGBN-arxiv

#layers 3

Hidden dimensions 256

Hardware Nvidia T4

Model size 217K

0

10

20

30

40

50

SpMM sgemm elemwise

ru
n

ti
m

e
 /

 e
p

o
ch

 (
m

s)

Runtime of GraphSage on OGBN-arxiv

M = SpMM(A, H)/deg(A)

H = ReLU(matmul(M, W1) + b1 + 

matmul(H, W2) + b2)

H = Dropout(H)

Both sparse operations and dense operations have

roughly the same amount of overhead.



GAT full-batch training
Setup

Dataset OGBN-arxiv

#layers 3

Hidden dimensions 256

#attention heads 3

Hardware Nvidia T4

Model size 1.4M

0

50

100

150

200

250

300

SpMM SDDMM sgemm elemwise reduce

ru
n

ti
m

e
 /

 e
p

o
ch

 (
m

s)

Runtime of GAT on OGBN-arxiv

H = matmul(W, H)

El = matmul(Wl_a, H)

Er = matmul(Wr_a, H)

E = LeakyReLU(SDDMM(El, Er, A))

E = edge_softmax(E)

M = SpMM(E, H)

H = ReLU(M, W)

Both sparse operations and dense operations have

roughly the same amount of overhead.



RGCN full-batch training
Setup

Dataset mutag

#layers 2

Hidden dimensions 256

Hardware Nvidia T4

Model size 10M

M = []

src_id, dst_id, etype = g.edges()

etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]

H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):

M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))

M = SpMM(A’, M)
H = ReLU(M)

0

5

10

15

20

25

30

SpMM SDDMM copy data concat elemwise sort

edges

per-etype

matmul

sort

sparse

matrix

ru
n

ti
m

e
 /

 e
p

o
ch

 (
m

s)
 

Runtime of RGCN on MUTAG

Dense operations dominate the model computation.



Mini-batch training on large graphs

• Another view of computing node embeddings.

• A mini batch represents the computation graph for target nodes.

• Small-world graphs lead to a huge computation graph.

1

2

6

7

5

3

4
9

8

10

11

1

2 653 4

1 74 113 6 8 109

ℎ1(2)
ℎ𝑖(1)
ℎ𝑗(0)

18



Neighbor sampling

• Prune the computation graph:

• Sample neighbors from a neighbor list of a vertex.

1

2

7

4

81

1

2 653 4

1 74 113 6 8 109

19



Mini-batch training on GPU

• Two ways of performing mini-batch training.

• Pure GPU training: all data in GPU.

• Mixed CPU-GPU training: the whole graph data in CPU and mini-batch 
computation in GPU.

• The benchmark covers pure GPU mini-batch training.



GraphSage mini-batch training
Setup

Dataset OGBN-products

#layers 2

Hidden dimensions 256

fanout 25,10

Batch size 1000

Hardware Nvidia T4

Model size 217K

M = SpMM(A, H)/deg(A)

H = ReLU(matmul(M, W1) + b1 + 

matmul(H, W2) + b2)

H = Dropout(H)

0

0.5

1

1.5

2

2.5

3

3.5

sample

neighbors

load

features

coo2csr spmm sgemm elemwise

ru
n

ti
m

e
 /

 m
in

i-
b

a
tc

h
 (

m
s)

Runtime of mini-batch training of GraphSage on 

OGBN-products

Minibatch

construction

Minibatch

computation

• Mini-batch construction is very expensive;

• Dense operations are much more expensive than

sparse operations in mini-batch training.



GAT mini-batch training
Setup

Dataset OGBN-products

#layers 3

Hidden dimensions 256

fanout 5,10,15

#attention heads 3

Batch size 1000

Hardware Nvidia T4

Model size 1.4M 0

5

10

15

20

25

30

35

40

ru
n

ti
m

e
 /

 b
a

tc
h

 (
m

s)

Runtime of mini-batch training of GAT on

OGBN-products

Minibatch

construction

Minibatch

computation

H = matmul(W, H)

El = matmul(Wl_a, H)

Er = matmul(Wr_a, H)

E = LeakyReLU(SDDMM(El, Er, A))

E = edge_softmax(E)

M = SpMM(E, H)

H = ReLU(M, W)

• Mini-batch computation of GAT is much more expensive;

mini-batch construction is relatively cheap.

• Dense operations are much more expensive than

sparse operations in mini-batch training.



RGCN mini-batch training
Setup

Dataset OGBN-MAG

#layers 2

Hidden dimensions 64

Batch size 512

Fanout 25,30

Hardware Nvidia T4

Model size 309M

M = []

src_id, dst_id, etype = g.edges()

etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]

H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):

M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))

M = SpMM(A’, M)
H = ReLU(M)

0

5

10

15

20

25

30

35

ru
n

ti
m

e
 /

 b
a

tc
h

 m
s)

Runtime of mini-batch training of RGCN

on OGBN-MAG

Minibatch

construction
Minibatch

computation



Summary

• For GNN workloads, both sparse and dense operations are important.

• Training methods have large impact on GNN workloads.

• For full-graph training, both sparse and dense operations account for half of 
runtime.

• For mini-batch training, runtime are more dominated by dense operations.

• Mini-batch sampling may cause significant effort during training.


