The Nature of Graph Neural Network Workloads

Graphs & applications

- Large: up to billions of nodes
- Many graphs are Heterogeneous
- Rich node/edge attributes

Graphs & applications

• Many small graphs

Code graph

Chemistry compounds

One graph has 100-1000 nodes, but there are many graphs.

Graph Neural Network

A family of (deep) neural networks that learn node, edge, and graph embeddings.

How do GNNs work?

An ego-network around each node is used to learn an embedding that captures task-specific information.

The embeddings use both the structure of the graph and the features of the nodes and edges.

The embeddings are learned in an end-to-end fashion; thus, the predictions are a function of the target node's ego-network.

A general graph neural network formalism

Graph neural networks are based on *message-passing*

Message passing can be expressed with two sparse operators: SpMM and SDDMM.

SpMM

- Edge-wise: $m_e^{(t+1)} = x_u^{(t)}$
- Node-wise: $x_v^{(t+1)} = \sum_{(u,e,v)\in\mathcal{E}} m_e^{(t+1)}$

Α				X	AX
				x_1	0
	a_1		a_4	x_2	a_1 * x_2 + a_4 * x_4
		a_2		x_3	= x_2 * x_3
a_3				x_4	a_3 * x_1

Sparse-dense Matrix Multiplication

SDDMM

• Edge-wise:
$$m_e^{(t+1)} = x_u^{(t)} x_v^{(t)^T}$$
, $(u, e, v) \in \mathcal{E}$

Sampled Dense-Dense Matrix Multiplication

Generalized SpMM and SDDMM

- g-SpMM
 - Edge-wise: $m_e^{(t+1)} = \phi(x_u^{(t)}, x_v^{(t)}, w_e^{(t)})$
 - Node-wise: $x_v^{(t+1)} = \rho(\{m_e^{(t+1)}: (u, e, v) \in \mathcal{E}\})$
- g-SDDMM

• Edge-wise:
$$m_e^{(t+1)} = \phi\left(x_u^{(t)}, x_v^{(t)}, w_e^{(t)}\right), (u, e, v) \in \mathcal{E}$$

Model 1: GraphSage

Handles graphs with one node type and one edge type.

$$\begin{split} M_{vw}^{(l)} &= \frac{h_w^{(l-1)}}{d_v + 1} \\ m_v^{(l)} &= \sum_{w \in N(v) \cup \{v\}} M_{vw}^{(l)} \\ h_v^{(l)} &= \phi(m_v^{(l)} W 1^{(l)} + h_v^{(l-1)} W 2^{(l)}) \end{split}$$

M = SpMM(A, H)/deg(A)H = ReLU(matmul(M, W1) + b1 + matmul(H, W2) + b2) H = Dropout(H)

Model 2: Graph attention networks (GAT)

Handles graphs with one node type and one edge type.

$$\alpha_{vw} = \frac{\exp(\text{LeakyReLU}(\vec{a}^{T}[W\vec{h}_{v}||W\vec{h}_{w}]))}{\sum_{k \in N_{v}} \exp(\text{LeakyReLU}(\vec{a}^{T}[W\vec{h}_{v}||W\vec{h}_{k}]))}$$

$$M_{vw}^{(l)} = \alpha_{vw}h_{w}^{(l-1)}$$

$$m_{vw}^{(l)} = \sum_{w \in N(v) \cup \{v\}} M_{vw}^{(l)}$$

$$h_{v}^{(l)} = \phi(m_{v}^{(l)})$$

$$H = \text{matmul}(W, H)$$

$$E = \text{matmul}(W_{l,a}, H)$$

$$E = \text{LeakyReLU}(SDDMM(EI, Er, A))$$

$$E = \text{edge}_{softmax}(E)$$

$$M = SpMM(E, H)$$

$$H = \text{ReLU}(M, W)$$

Model 3: Relational graph convolution networks (RGCN)

Handles graphs whose nodes are connected with different relations.

 $m_{v}^{(l)} = \sum_{w \in N(v) \cup \{v\}} M_{vw}^{(l)}$

 $h_n^{(l)} = \sigma(m_n^{(l)})$

Sort the edges based on the edge type

M = []

GNN benchmark

- Graph types:
 - Homogeneous
 - Heterogeneous
- Graph size:
 - Small
 - Large
- Training methods:
 - Full batch training
 - Mini-batch training

	Graph type	Graph Size	Training method
OGBN-arxiv	Homogeneous	V =169K, E =1M	Full graph
OGBN-products	Homogeneous	V =2.4M, E =62M	Mini-batch
MUTAG	Heterogeneous	V =27K, E =148K, ETYPE =50	Full graph
OGBN-MAG	Heterogeneous	V =1.9M, E =21M, ETYPE =8	Mini-batch

Benchmark framework: Deep Graph Library (DGL)

Benchmark framework: Deep Graph Library (DGL)

- DGL provides sparse operators:
 - SpMM, SDDMM
 - Neighbor sampling for mini-batch training.
- Deep learning framework provides dense operators:
 - Matrix multiplication, element-wise operations, reduction, etc
- The benchmark uses DGL + Pytorch.

Full-graph training on small graphs

• Apply multiple layers of graph neural networks.

GraphSage full-batch training

Setup	
Dataset	OGBN-arxiv
#layers	3
Hidden dimensions	256
Hardware	Nvidia T4
Model size	217К

```
M = SpMM(A, H)/deg(A)
H = ReLU(matmul(M, W1) + b1 +
matmul(H, W2) + b2)
H = Dropout(H)
```


Runtime of GraphSage on OGBN-arxiv

Both sparse operations and dense operations have roughly the same amount of overhead.

GAT full-batch training

Setup	
Dataset	OGBN-arxiv
#layers	3
Hidden dimensions	256
#attention heads	3
Hardware	Nvidia T4
Model size	1.4M

H = matmul(W, H)
El = matmul(Wl_a, H)
Er = matmul(Wr_a <i>,</i> H)
E = LeakyReLU(SDDMM(El, Er, A))
E = edge_softmax(E)
M = SpMM(E, H)
H = ReLU(M, W)

Runtime of GAT on OGBN-arxiv

Both sparse operations and dense operations have roughly the same amount of overhead.

RGCN full-batch training

Setup	
Dataset	mutag
#layers	2
Hidden dimensions	256
Hardware	Nvidia T4
Model size	10M

M = []

src_id, dst_id, etype = g.edges()
etype, idx = sort(etype)
src_id, dst_id = src_id[idx], dst_id[idx]
H = H[src_id]
H_list = split(H, etypes)
for r in range(num_relations):
 M.append(matmul(H_list[r], W[r])/deg)
M = cat(M)
A' = coo_matrix((range(num_edges), dst_id))
M = SpMM(A', M)
H = ReLU(M)

Runtime of RGCN on MUTAG

Dense operations dominate the model computation.

Mini-batch training on large graphs

- Another view of computing node embeddings.
- A mini batch represents the computation graph for target nodes.
- Small-world graphs lead to a huge computation graph.

Neighbor sampling

- Prune the computation graph:
 - Sample neighbors from a neighbor list of a vertex.

Mini-batch training on GPU

- Two ways of performing mini-batch training.
 - Pure GPU training: all data in GPU.
 - Mixed CPU-GPU training: the whole graph data in CPU and mini-batch computation in GPU.
- The benchmark covers pure GPU mini-batch training.

GraphSage mini-batch training

Setup	
Dataset	OGBN-products
#layers	2
Hidden dimensions	256
fanout	25,10
Batch size	1000
Hardware	Nvidia T4
Model size	217K

M = SpMM(A, H)/deg(A)H = ReLU(matmul(M, W1) + b1 + matmul(H, W2) + b2) H = Dropout(H)

- Mini-batch construction is very expensive;
- Dense operations are much more expensive than sparse operations in mini-batch training.

GAT mini-batch training

Setup	
Dataset	OGBN-products
#layers	3
Hidden dimensions	256
fanout	5,10,15
#attention heads	3
Batch size	1000
Hardware	Nvidia T4
Model size	1.4M

H = matmul(W, H) El = matmul(WI_a, H) Er = matmul(Wr_a, H) E = LeakyReLU(SDDMM(El, Er, A)) E = edge_softmax(E) M = SpMM(E, H) H = ReLU(M, W)

Runtime of mini-batch training of GAT on OGBN-products

- Mini-batch computation of GAT is much more expensive; mini-batch construction is relatively cheap.
- Dense operations are much more expensive than sparse operations in mini-batch training.

RGCN mini-batch training

Setup	
Dataset	OGBN-MAG
#layers	2
Hidden dimensions	64
Batch size	512
Fanout	25,30
Hardware	Nvidia T4
Model size	309M

M = []

src_id, dst_id, etype = g.edges()
etype, idx = sort(etype)
src_id, dst_id = src_id[idx], dst_id[idx]
H = H[src_id]
H_list = split(H, etypes)
for r in range(num_relations):
 M.append(matmul(H_list[r], W[r])/deg)
M = cat(M)
A' = coo_matrix((range(num_edges), dst_id))
M = SpMM(A', M)
H = ReLU(M)

Summary

- For GNN workloads, both sparse and dense operations are important.
- Training methods have large impact on GNN workloads.
 - For full-graph training, both sparse and dense operations account for half of runtime.
 - For mini-batch training, runtime are more dominated by dense operations.
 - Mini-batch sampling may cause significant effort during training.