The Nature of Graph Neural
Network Workloads

Graphs & applications

e Large: up to billions of nodes

* Many graphs are Heterogeneous

* Rich node/edge attributes

Buyers Products Seller
Komedi-
drama

ot

— — Don't stop &

d : § I. Dreaming

- -"' i gl iy 5
{) e =i g 3
> - T 1 L

[T [h ! @\

T el < < s e [T, AdityaRaj f= = = . ~ . _ _| adityaraj
e Balani ® _I Kapoor
Vasantl Ashish |

P Q\
_____________ Sambar
N The Salsa
g Sandstorm 9 C, -
T \\/ (P 11 ~,
2 * & / ;
5 Review: Great Seller! "~ Vasant’ m
: g Balam Re il Balani Redij
Review: Great Sellerl IMDB Freebase

Social networks Amazon graph Knowledge graphs

Graphs & applications

* Many small graphs
s=07] B1

tl:=a-b B2

ifz t1 goto B4

Y

12 :=i%4 B3

s:i=s+12

:"‘-’

4]; i

i=i+1
13 :=n-i
itz 3 goto B2 | BS

Y
[t4:=a-b | Bg

Code graph

Mol Tree decomposition
o — Ao
® = Cluster:
n

Encode 1 (Sec 2.2) Encode l (Sec 2.3)
oEEmom Zg Zr o am m
Decode 1 (Sec 2.4)

/Dd
:525 i.

Chemistry compounds

One graph has 100-1000 nodes, but there are many graphs.

Graph Neural Network

A family of (deep) neural networks that learn node,
edge, and graph embeddings.

GNN papers published

1500

They are

w becoming

extremely
popular.

500

2014 2015

2016

2017

2018

How do GNNs work?

captures task-specific information.

nodes and edges.

An ego-network around each node is used to learn an embedding that
The embeddings use both the structure of the graph and the features of the

The embeddings are learned in an end-to-end fashion; thus, the predictions
are a function of the target node’s ego-network.

A general graph neural network formalism

Graph neural networks are based on message-passing

Message function

Edge-wise: m{'™)) = ¢ (X,Ef),xg), Wg)) (u,e,v) € E.

Node-wise: x{T1) =) (X_Ef), p ({mgﬂ) t(u,e,0) € 5}))

Node update aggregation

Neural Message Passing for Quantum Chemistry

https://arxiv.org/abs/1704.01212

SpMM

* Edge-wise: mgtﬂ) = xff)
* Node-wise: xétﬂ) = Z(u’e,v)eg mgtﬂ)
A X AX
x_1 0
a1 a_4 X_2 al*x2+ad*x 4
! a2 X 3] X 2*x 3
a3 X_4 a3* x:l N

Sparse-dense Matrix Multiplication

SDDMM

T
* Edge-wise: m(D = (t) () ,(u,e,v) € €&

YAT

y_1°T |y 27T |y 3T |y_4 T

Ao (XYT)

Sampled Dense-Dense Matrix Multiplication

Generalized SoMM and SDDMM

* g-SpMM
* Edge-wise: mgtﬂ) = ¢ (xff),x,gt),wét))
* Node-wise: xétﬂ) = p({mgtﬂ): (u,e,v) € £})
e g-SDDMM
. Edge—wise:mgtﬂ) = ¢ (xl(f),xgt),we(t)) ,(u,e,v) €€

Model 1: GraphSage

Handles graphs with one node type and one edge type.

l_
L y® _ Y
\ «—® W dy+1 M = SpMM(A, H)/deg(A)
* o H = ReLU(matmul(M, W1) + bl +
O y®
v vw matmul(H, W2) + b2)
WEN (v)U{v} H = Dropout(H)
hY = pmPw1® + plPw20)

Model 2: Graph attention networks (GAT)

Handles graphs with one node type and one edge type.

exp(LeakyReLU(a’ [Wh,||[Wh,,]))

B avW

o ® ZkENv eXp(LeakyReLU(a’T [Whv“th])) H = matmul(W, H)
* El = matmul(WI_a, H)
l -1 _
M?Sv)v — avwh\(/v) Er_— matmul(Wr_a, H)
E = LeakyReLU(SDDMM(EI, Er, A))
E = edge_softmax(E)
@ _) _
m,” = My M = SpMM(E, H)
WEN (v)u{v} H = ReLU(M, W)

l l
hy = ¢(my

Model 3: Relational graph convolution

networks (RGCN)

Handles graphs whose nodes are connected with different relations.

:country

U.S.A.
& L 4
C \\\?'60 > e '
v wniversity
; educated_at
Mikhail Baryshnikov » Vaganova Academy

:ballet_dancer a
Wafo'ed :award

Vilcek prize

Méf}, = — W,.(l)h&i_l), ris the relation of e, .

Cyr

vw
WEN (v)u{v}

l l
by = o(m;,”)

m® = 2 y®

M =]

src_id, dst_id, etype = g.edges|()
etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]
H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):
M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))
M = SpMM(A’, M)
H = ReLU(M)

GNN benchmark

* Graph types: | Graphtype _|GraphSize | Trainingmethod _

* Homogeneous OGBN-arxiv Homogeneous |V|[=169K, |E|=1M Full graph
* Heterogeneous OGBN-products Homogeneous |V|=2.4M, |E|=62M Mini-batch
. MUTAG Heterogeneous |V|=27K, |E|=148K, Full graph
* Graph size: ETYPE|<50
* Small OGBN-MAG Heterogeneous |V|=1.9M, |E[=21M, Mini-batch
* Large |ETYPE|=8

* Training methods:
* Full batch training
* Mini-batch training

Benchmark framework: Deep Graph Library (DGL)

Benchmark framework:
(DGL)

* DGL provides sparse operators:
e SpMM, SDDMM
* Neighbor sampling for mini-batch
training.
* Deep learning framework provides
dense operators:
* Matrix multiplication, element-wise
operations, reduction, etc
* The benchmark uses DGL +
Pytorch.

Deep Graph Library

Deep Graph Library

Platform Backend

DGL-LifeSci

DGL-KG

NN
Graph Modules

GNN Message-Passing

Interfa

ce

Graph

Algorithm

DGL Runtime

PyTorch

MXNet

TensorFlow

GPU(s)

CPU

Cluster

Full-graph training on small graphs

* Apply multiple layers of graph neural networks.

Hidden layer Hidden layer
Input i v . Qutput
= °] r
Rell | < LT ReLU
—— 4 \ e ¢ -—i-'j\;—r- L \ e . -—h-rj—l- e

GraphSage full-batch training
Er N

Dataset OGBN-arxiv

Hlayers 3 Runtime of GraphSage on OGBN-arxiv
50

Hidden dimensions 256

S
o

w
o

N
o

runtime / epoch (ms)

=
o

Hardware Nvidia T4
Model size 217K
M = SpMM(A, H)/deg(A) |
H = ReLU(matmul(M, W1) + bl +
0

matmul(H, W2) + b2)
H = Dropout(H)

SpMM sgemm elemwise

Both sparse operations and dense operations have
roughly the same amount of overhead.

GAT full-batch training
e |

Dataset OGBN-arxiv Runtime of GAT on OGBN-arxiv
300
#layers 3
- 250
Hidden dimensions 256 £
< 200
#attention heads 3 3
& 150
Hardware Nvidia T4 P
£ 100
Model size 1.4M =
B
H = matmul(W, H) 0 -
El = matmuI(WI_a, H) SpMM SDDMM sgemm elemwise reduce

Er = matmul(Wr_a, H)
E = LeakyReLU(SDDMM(EI, Er, A))

E = edge_softmax(E) Both sparse operations and dense operations have

M = SpMM(E, H) roughly the same amount of overhead.
H = ReLU(M, W)

RGCN full-batch training

Dataset mutag
#layers 2

Hidden dimensions 256
Hardware Nvidia T4
Model size 10M
M=]

src_id, dst_id, etype = g.edges()

etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]

H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):
M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))

M = SpMM(A’, M)

H = ReLU(M)

Runtime of RGCN on MUTAG

N w
u o

N
o

=
o

runtime / epoch (ms)
H
o

2]

SpMM SDDMM copy data concat elemwise sort per-etype sort
edges matmul sparse
matrix

o

Dense operations dominate the model computation.

Mini-batch training on large graphs

* Another view of computing node embeddings.
* A mini batch represents the computation graph for target nodes.
* Small-world graphs lead to a huge computation graph.

Neighbor sampling

* Prune the computation graph:
* Sample neighbors from a neighbor list of a vertex.

10 11

Mini-batch training on GPU

* Two ways of performing mini-batch training.
* Pure GPU training: all data in GPU.

* Mixed CPU-GPU training: the whole graph data in CPU and mini-batch
computation in GPU.

* The benchmark covers pure GPU mini-batch training.

GraphSage mini-batch training

Dataset OGBN-products
#layers 2

Hidden dimensions 256

fanout 25,10

Batch size 1000

Hardware Nvidia T4
Model size 217K

M = SpMM(A, H)/deg(A)

H = ReLU(matmul(M, W1) + bl +
matmul(H, W2) + b2)

H = Dropout(H)

Runtime of mini-batch training of GraphSage on
OGBN-products

1
0.5 I I
0 [

sample load coo2csri 'spmm sgemm elemwise
neighbors features

runtime / mini-batch (ms)
=
(0]

Minibatch Minibatch
construction computation

* Mini-batch construction is very expensive;
* Dense operations are much more expensive than
sparse operations in mini-batch training.

GAT mini-batch training
e |

Dataset OGBN-products

40
#layers 3 35
Hidden dimensions 256 g 30
fanout 5,10,15 g 25
#attention heads 3 E iz
Batch size 1000 €10
Hardware Nvidia T4) 5
Model size 1.4M 0
H = matmul(W, H) &
El = matmul(WI_a, H) <
Er = matmul(Wr_a, H)
E = LeakyReLU(SDDMM(EI, Er, A)) *
E = edge_softmax(E)
M = SpMM(E, H) °
H = ReLU(M, W)

Runtime of mini-batch training of GAT on
OGBN-products

“ ol I []
< & S N < <& & &
NS S N & & & & N
> 8@’5“ < S c)bb & éef(\ N
&
Minibatch Minibatch
construction computation
Mini-batch computation of GAT is much more expensive;

mini-batch construction is relatively cheap.
Dense operations are much more expensive than
sparse operations in mini-batch training.

RGCN mini-batch training

Dataset OGBN-MAG
#layers 2

Hidden dimensions 64

Batch size 512

Fanout 25,30
Hardware Nvidia T4
Model size 309M

M =]

src_id, dst_id, etype = g.edges()

etype, idx = sort(etype)

src_id, dst_id = src_id[idx], dst_id[idx]

H = H[src_id]

H_list = split(H, etypes)

for r in range(num_relations):
M.append(matmul(H_list[r], W[r])/deg)

M = cat(M)

A’ = coo_matrix((range(num_edges), dst_id))

M = SpMM(A’, M)

H = ReLU(M)

Runtime of mini-batch training of RGCN

Minibatch
construction

on OGBN-MAG
N N 2 & &
f—)§\ %QQ® go@b & \eés\

Minibatch
computation

Ssummary

* For GNN workloads, both sparse and dense operations are important.

* Training methods have large impact on GNN workloads.

* For full-graph training, both sparse and dense operations account for half of
runtime.

* For mini-batch training, runtime are more dominated by dense operations.
* Mini-batch sampling may cause significant effort during training.

