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Samsung NPU Technology
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HW Architecture
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NPU architecture

Configuration Samsung NPU

Core Frequency 

@NM voltage
936 MHz

Control Core Single core CPU

I/O 2 channel each

Number of Core 3

MACs per core 2,048

Data Parallelism 

Simultaneous 32-input 

channels and 64-output 

channels

Tera Operations per sec 

@NM voltage
11.5

Number precision INT8, INT16

• NPU Scheduler

– Tiling memory transactions between internal memories and external memories

– Communicating with AP Host and other processing units

• NPU Core : Accelerating convolution and matrix-vector multiplication

– NPUC (Hard controller): Controlling each of modules inside of NPU engines
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NPU core

Components Modules Function

Controller (NPUC) CMDQ (Command Queue) Fetches compiled code from DRAM and controls DMA resources.

Tensor 

engine

FU (Fetching Unit) Fetches IFM, weights and PSUM from scratchpad.

DSU (Dispatching Unit) Dispatches the valid non-zero IFMs to MAAs.

MAA (MAC Array) Performs MAC operations. 

AU (Activation Unit) Performs activation functions such as ReLU family.

BU (Buffering Unit) Buffers OFMs or PSUMs.

Vector engine CU (Computing Unit) Composed of multiple ways of ALU operators.
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NPU features

• Fixed-point machines with 3.8TOPS per core of computational power in nominal condition

• Supports following operators for the inference of deep neural networks 

– Convolution

– Matrix-vector multiplication

– Various activation functions: ReLU family (ReLU, Leaky ReLU, PReLU), tanh, sigmoid

– Symmetric / Asymmetric quantization 

– Max, Average, ROI pooling

• For MAC efficiency

– Skipping zeros on feature-map during convolution

– Gate clocks when there are zeros on weight during convolution

• For memory efficiency 

– Feature map and weight compression and decompression

– Fast resource scheduling for hiding the DMA time behind the compute time
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Key points

Challenges

Solutions

• To find an efficient configuration to control a large number of resources

• To maintain a high utilization factor for those diverse convolutions

• Adder-tree-based datapath and serialized convolutional operations for high utilization of large 

number of MACs

• Feature-map-aware zero-skipping for high performance and energy efficiency

• Reduced memory footprint and bandwidth via weight and FM compression

• Parallelization of DMA and MAC compute time by fast resource scheduling

• Design an area/energy-efficient NPU for a flagship mobile SoC

Objective
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Keypointⓐ adder-tree based dot-product 
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Solutions

• Adder-tree based dot-product reduces the power consumption by 26%

– Due to larger energy consumed in accumulator and flip-flop combo

• It enables NPU to have enough flexibility to support various convolution.

Motivation

• To find an efficient configuration to control a large number of resources
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(b) Accumulator-based dot-product engine

Configuration of a core 
: 2K MACs / core = 32 (C) x 64 (M) x 1 (spatial)
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Keypointⓑ Zero-skipping

Solutions

• Feature-map-aware zero-skipping for high performance and energy efficiency.

• Vectors after zero-skipping are broadcasted to all MAC arrays.

Motivation

• More than 50% of feature map are zeros which have no effect on the final result. 
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Keypointⓒ Feature-map lossless compressor 

Solutions

• The compressor stores only non-zero elements with the indexing meta data.

• Meta data is generated by quad-tree relying on clustering the zero values.

• It achieves high compression ratio and decompression speed.

Motivation

• Minimizing the memory transaction is important as much as computation.

Level 2 Quad-tree Level 1 Quad-tree Level 0 Quad-tree

: Zero feature

: Non-zero feature

: Clustered zero features

0110010 1110 1111 1111
Quad-tree Header

xxx

Nonzero Features

xxx xxx

Compressed feature map

Stream length 

Truncated nonzero bitwidth

0111
Meta-data
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Keypointⓓ Fast resource scheduling

Motivation
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Solutions

• Sub-graph of a network is transformed as NPU binary by compiler.

• CMDQ handles an interrupt from a module in tens of cycle.

• Hiding the DMA time behind the compute time is critical for high performance.

• A number of synchronizations would be required to control resources properly.
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Integrated Hardware and Software Design

Neural Processing SDK

Deep Learning
Frameworks

Software Architecture & 
Tools

Compute Processors

Pre-trained

models
Library

Compiler Conversion

tools

CPU｜GPU｜DSP｜NPU

AndroidTM NN API
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Exynos NN SDK

• Android NN API: ENN implements the interfaces defined by android NN API

– User APP  Android NN  ENN HAL  ENN Framework

• ENN NN API: ENN exposes its interfaces to user directly

– User APP  ENN Framework

Exynos NN Tools

Android NN

ENN HAL (ENN Driver)

ENN Framework

ENN Runtime

CPU UDGPU UDNPU UDDSP UD

App

NNC

[Hardware]

[SW System]

[User App]

<Android NN API><Exynos NN API>

Exynos NN Framework (On-device)

NNC file

(Neural Network 

Container)

SCVT:

Model conversion,

Quantization,

Operation fusion

Compiler

App

Neural network model Neural network model

CPUGPUNPUDSP

App

TF Lite
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NN development flow with Exynos NPU

13/20

Model Conversion Quantization Compilation

Android 
NNAPI

ENN API

DSP GPU

HW

App Developer ENN Tools ENN On-device SW

Caffe/TFLite/ONNX model

NNC File

NPU



Main Components of ENN Tools
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• Make tools easy to 
use by visually 
providing key info of 
NN model and its 
quantization via GUI 
environment

• Estimate perf of NN 
models  to help models 
updated to meet 
requirement or 
compiled as expected

• Quantize NN models     
using our DL 
framework in order for 
the models to run 
efficiently on our NPU

• Convert NN models 
represented by various 
DL frameworks into 
models that are good 
for NPU quantization

SCVT

Samsung 

ConVersion Tool 

for DL frameworks

MQ Tools

Model 

Quantization Tools

Visualizer
PE

Performance

Estimator



Sequence of ENN Tools
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SCVT and MQ Tools 

• SCVT (Samsung ConVersion Tool) is a tool that converts models trained with 

various Deep Learning Frameworks to tailor to Samsung NPU.

– SCVT modifies an NN graph for more efficient processing in NPU.

• Combinatory operation into simple one, e.g., SpaceToBatchND+Conv2D+BatchToSpaceND  Dilated Conv

• Add/Mul/Activation folding to weight and bias

– SCVT supports NN models exported to Caffe, TFLite (Scheme v3), or ONNX (IR 6+) format.

• MQ Tools quantize a neural network to be suitable for low-precision hardware 

through three processes, Profiling, Quantization, and Compensation

– Profiling is a process to acquire statistics of the activations for each channel or layer when 

lots of sample images entered into a network.

– Quantization is a process to determine an optimal fractional length of activations based on 

the profiling as well as weights/biases.

– Compensation is a process to compensate biases by comparing between original model and 

quantized model.
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Performance Estimator
TFLite

TFLite

 modified prototxt

SCVT

SCaffe

TFLite  SNC

 SNC  prototxt

SNC

Core of Performance Estimator

( time estimation with Layer-by-layer operation )

 prototxt  SNC

SNC

Caffe

prototxt
+caffe model

ONNX
ONNX 
(limited 
coverage)

ONNX  SNC

SNC

Final output =
Total time
MAC time
DMA time
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• Performance Estimator (PE)

– Estimate performance of NN models without 

making them run on NPU, even w/o actual 

weights

– Helpful to select model structures or update 

models to get better performance

– Able to support Caffe, TFLite, and ONNX models 

with the help of SCVT

• PE Limitation

– Layer-by-layer operation assumed

– Difference from actual performance, which  

depends on optimization level of compiler



NN Compiler

• NPU Compiler converts quantized models to NNC executable for ENN User App.

– Input

• Model structure and weight including quantization information

– Output

• NNC file containing optimized program with ops to be executed on CPU/GPU/NPU by ENN Framework
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Device driver

• Key functionality

– Serialization of NCP requests

• NPU DD enqueues NCP requests created by multiple linux tasks into a NCP request queue

• NPU DD serializes and transfers them to NPU so that NPU firmware can process them

Mailbox interface

NCP request

Exynos NN Driver

Exynos NN runtime

NPU User Driver

Exynos NN 

Framework

Session manager

NCP request 

queue manager

NPU 

device 

driver

Mailbox

command

Linux Kernel

VS4L interface

Application
Firmware

RTOS

Host CPU-side SW stack

NPU-side SW stack
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Evaluation
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• NPU achieves 623 inferences/s at 1196 MHz in multi-thread mode

• The energy efficiency of 0.84mJ/inf. (1190 Inf./J) were measured
– Corresponds to 13.6 TOPS/W for Inception-V3 including DMA power (not DRAM)
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Samsung Secret

Samsung System LSI
for AI Everywhere


