
Samsung

Neural Processing Unit
An AI accelerator and SDK for flagship mobile AP

Jun-Seok Park, Heonsoo Lee, Dongwoo Lee, Jewoo Moon, Suknam kwon,
SangHyuck Ha, MinSeong Kim, Junghun Park, Jihoon Bang, Sukhwan Lim Inyup Kang

Samsung NPU Technology

An Intelligent
Powerhouse

Superior
HW Architecture

Integrated

HW & SW Design

2/20

NPU architecture

Configuration Samsung NPU

Core Frequency

@NM voltage
936 MHz

Control Core Single core CPU

I/O 2 channel each

Number of Core 3

MACs per core 2,048

Data Parallelism

Simultaneous 32-input

channels and 64-output

channels

Tera Operations per sec

@NM voltage
11.5

Number precision INT8, INT16

• NPU Scheduler

– Tiling memory transactions between internal memories and external memories

– Communicating with AP Host and other processing units

• NPU Core : Accelerating convolution and matrix-vector multiplication

– NPUC (Hard controller): Controlling each of modules inside of NPU engines
3/20

CPU

GIC

Compressor/

Decompressor

DMA

Pool

L1 (I/D)

GNPU 0

NPUC

NPU Core

(2K MAC)

MEM

(1MB)

GNPU 1

NPUC

NPU Core

(2K MAC)

MEM

(1MB)

GNPU 2

NPUC

NPU Core

(2K MAC)

MEM

(1MB)

DSP 0

DSP Core

MEM

(512KB)

SDMA
MMU

NPU

Scheduler

NPU-DSP Sub-System

NPU core

Components Modules Function

Controller (NPUC) CMDQ (Command Queue) Fetches compiled code from DRAM and controls DMA resources.

Tensor

engine

FU (Fetching Unit) Fetches IFM, weights and PSUM from scratchpad.

DSU (Dispatching Unit) Dispatches the valid non-zero IFMs to MAAs.

MAA (MAC Array) Performs MAC operations.

AU (Activation Unit) Performs activation functions such as ReLU family.

BU (Buffering Unit) Buffers OFMs or PSUMs.

Vector engine CU (Computing Unit) Composed of multiple ways of ALU operators.

4/20

NPU Controller

(Command Queue)

IFM fetcher

Weight

fetcher

IFM/PSUM

fetcher

PSUM

fetcher

16 x 16

MAC Array

Weight buffer

MAA1

Sparsity

Controller

Flow

Controller

Flow

Controller

Flow
Controller

MAA2

MAA3

Fetching

Unit

Dispatching

Unit

MAA0

MAA

Activation &

Quantization 0

Activation &

Quantization 2

Activation &

Quantization 1

Activation &

Quantization 3

Activation Unit Buffer unit

Buffer 0

Buffer 1

Buffer 2

Buffer 3

NPU Engine

IF
M

 r
e

g.

NPU Core

NPUE 0

1 MB

Scratchpad

memory NPUE 1

Computing

Unit

: IFM

: Weight

: PSUM

: Activated path only on split mode

NPU features

• Fixed-point machines with 3.8TOPS per core of computational power in nominal condition

• Supports following operators for the inference of deep neural networks

– Convolution

– Matrix-vector multiplication

– Various activation functions: ReLU family (ReLU, Leaky ReLU, PReLU), tanh, sigmoid

– Symmetric / Asymmetric quantization

– Max, Average, ROI pooling

• For MAC efficiency

– Skipping zeros on feature-map during convolution

– Gate clocks when there are zeros on weight during convolution

• For memory efficiency

– Feature map and weight compression and decompression

– Fast resource scheduling for hiding the DMA time behind the compute time

5/20

Key points

Challenges

Solutions

• To find an efficient configuration to control a large number of resources

• To maintain a high utilization factor for those diverse convolutions

• Adder-tree-based datapath and serialized convolutional operations for high utilization of large

number of MACs

• Feature-map-aware zero-skipping for high performance and energy efficiency

• Reduced memory footprint and bandwidth via weight and FM compression

• Parallelization of DMA and MAC compute time by fast resource scheduling

• Design an area/energy-efficient NPU for a flagship mobile SoC

Objective

6/20

Keypointⓐ adder-tree based dot-product

S

R

Many filters

S

R

1

M

Win

H
in

Input image

(input feature map)

Wout

H
o

u
t

Output image

(Output feature map)

Solutions

• Adder-tree based dot-product reduces the power consumption by 26%

– Due to larger energy consumed in accumulator and flip-flop combo

• It enables NPU to have enough flexibility to support various convolution.

Motivation

• To find an efficient configuration to control a large number of resources

OFM

IFM

t0-8 t9-17 t63-71

t0 t1 t2

t3 t4 t5

t6 t7 t8

t9 t10 t11

t12 t13 t14

t15 t16 t17

t63 t64 t65

t66 t67 t68

t69 t70 t71

+

+

+

+

+
+ ACC

QD

(a) Adder-tree based dot-product engine

QD
ACC

MAC MAC MAC

x

x

x

x
x

+ MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

(b) Accumulator-based dot-product engine

Configuration of a core
: 2K MACs / core = 32 (C) x 64 (M) x 1 (spatial)

7/20

Keypointⓑ Zero-skipping

Solutions

• Feature-map-aware zero-skipping for high performance and energy efficiency.

• Vectors after zero-skipping are broadcasted to all MAC arrays.

Motivation

• More than 50% of feature map are zeros which have no effect on the final result.

fmVec

to MAA

wVec to

MAACycle #0

fmVec

to MAA

wVec to

MAACycle #1

fmVec

to MAA

wVec to

MAACycle #3

fm
V

e
c
 0

fm
V

e
c
 1

fm
V

e
c
 2

fm
V

e
c
 3

fm
V

e
c
 4

fm
V

e
c
 5

fm
V

e
c
 6

fm
V

e
c
 7

w
V

e
c
 0

w
V

e
c
 1

w
V

e
c
 2

w
V

e
c
 3

w
V

e
c
 4

w
V

e
c
 5

w
V

e
c
 6

w
V

e
c
 7

:Zero data

w
V

e
c
 8

fm
V

e
c
 8

Feature
map

Weight

fmVec

to MAA

wVec to

MAACycle #2

8/20

Keypointⓒ Feature-map lossless compressor

Solutions

• The compressor stores only non-zero elements with the indexing meta data.

• Meta data is generated by quad-tree relying on clustering the zero values.

• It achieves high compression ratio and decompression speed.

Motivation

• Minimizing the memory transaction is important as much as computation.

Level 2 Quad-tree Level 1 Quad-tree Level 0 Quad-tree

: Zero feature

: Non-zero feature

: Clustered zero features

0110010 1110 1111 1111
Quad-tree Header

xxx

Nonzero Features

xxx xxx

Compressed feature map

Stream length

Truncated nonzero bitwidth

0111
Meta-data

9/20

Keypointⓓ Fast resource scheduling

Motivation

L1

L2 L3

L4 L5IFM

WL1

WL2 WL3

WL4 WL5

1 2 S
y
n
c
h

.

3

S
y
n
c
h

ro
n
iz

a
tio

n

4 5

S
y
n
c
h

. S
y
n
c
h

.

S
y
n

c
h

.

Read IFM

Read Weight

1 4

1 2 3 4 5

1 5

NPU Core

Write OFM

Sub-Graph of a network for NPU Core

L1

L2 L3

L4 L5IFM

WL1

WL2 WL3

WL4 WL5

1 2 S
y
n
c
h

.

3

S
y
n
c
h

ro
n
iz

a
tio

n

4 5

S
y
n
c
h

. S
y
n
c
h

.

S
y
n
c
h

.

Read IFM

Read Weight

1 4

1 2 3 4 5

1 5

NPU Core

Write OFM

Sub-Graph of a network for NPU Core

L1

L2 L3

L4 L5IFM

WL1

WL2 WL3

WL4 WL5

1 2 S
y
n
c
h

.

3

S
y
n
c
h

ro
n
iz

a
tio

n

4 5

S
y
n
c
h

. S
y
n
c
h

.

S
y
n
c
h

.

Read IFM

Read Weight

1 4

1 2 3 4 5

1 5

NPU Core

Write OFM

Sub-Graph of a network for NPU Core

L1

L2 L3

L4 L5IFM

WL1

WL2 WL3

WL4 WL5

1 2 S
y
n

c
h

.

3

S
y
n
c
h

ro
n
iz

a
tio

n

4 5

S
y
n
c
h

. S
y
n
c
h

.

S
y
n
c
h

.

Read IFM

Read Weight

1 4

1 2 3 4 5

1 5

NPU Core

Write OFM

Sub-Graph of a network for NPU Core

L1

L2 L3

L4 L5IFM

WL1

WL2 WL3

WL4 WL5

1 2 S
y
n

c
h

.

3

S
y
n
c
h

ro
n
iz

a
tio

n

4 5

S
y
n
c
h

. S
y
n
c
h

.

S
y
n
c
h

.

Read IFM

Read Weight

1 4

1 2 3 4 5

1 5

NPU Core

Write OFM

Sub-Graph of a network for NPU Core

L1

L2 L3

L4 L5IFM

WL1

WL2 WL3

WL4 WL5

1 2 S
y
n

c
h

.

3

S
y
n
c
h

ro
n
iz

a
tio

n

4 5

S
y
n
c
h

. S
y
n
c
h

.

S
y
n
c
h

.

Read IFM

Read Weight

1 4

1 2 3 4 5

1 5

NPU Core

Write OFM

Sub-Graph of a network for NPU Core

L1

L2 L3

L4 L5IFM

WL1

WL2 WL3

WL4 WL5

1 2 S
y
n
c
h

.

3

S
y
n
c
h

ro
n
iz

a
tio

n

4 5

S
y
n
c
h

. S
y
n
c
h

.

S
y
n

c
h

.

Read IFM

Read Weight

1 4

1 2 3 4 5

1 5

NPU Core

Write OFM

Sub-Graph of a network for NPU Core

Solutions

• Sub-graph of a network is transformed as NPU binary by compiler.

• CMDQ handles an interrupt from a module in tens of cycle.

• Hiding the DMA time behind the compute time is critical for high performance.

• A number of synchronizations would be required to control resources properly.

10/20

Integrated Hardware and Software Design

Neural Processing SDK

Deep Learning
Frameworks

Software Architecture &
Tools

Compute Processors

Pre-trained

models
Library

Compiler Conversion

tools

CPU｜GPU｜DSP｜NPU

AndroidTM NN API

11/20

Exynos NN SDK

• Android NN API: ENN implements the interfaces defined by android NN API

– User APP Android NN ENN HAL ENN Framework

• ENN NN API: ENN exposes its interfaces to user directly

– User APP ENN Framework

Exynos NN Tools

Android NN

ENN HAL (ENN Driver)

ENN Framework

ENN Runtime

CPU UDGPU UDNPU UDDSP UD

App

NNC

[Hardware]

[SW System]

[User App]

<Android NN API><Exynos NN API>

Exynos NN Framework (On-device)

NNC file

(Neural Network

Container)

SCVT:

Model conversion,

Quantization,

Operation fusion

Compiler

App

Neural network model Neural network model

CPUGPUNPUDSP

App

TF Lite

12/20

NN development flow with Exynos NPU

13/20

Model Conversion Quantization Compilation

Android
NNAPI

ENN API

DSP GPU

HW

App Developer ENN Tools ENN On-device SW

Caffe/TFLite/ONNX model

NNC File

NPU

Main Components of ENN Tools

14/20

• Make tools easy to
use by visually
providing key info of
NN model and its
quantization via GUI
environment

• Estimate perf of NN
models to help models
updated to meet
requirement or
compiled as expected

• Quantize NN models
using our DL
framework in order for
the models to run
efficiently on our NPU

• Convert NN models
represented by various
DL frameworks into
models that are good
for NPU quantization

SCVT

Samsung

ConVersion Tool

for DL frameworks

MQ Tools

Model

Quantization Tools

Visualizer
PE

Performance

Estimator

Sequence of ENN Tools

15/20

Visualizer

TFLITE

ONNX

Caffe

SCVT

Parser Optimizer Generator

MQ Tools

Profiler Quantizer Compensator

PE

Estimator
Policy

maker

Time

calculator

Constraints system

GUI for Tools

Quantization

Error report

Perf Estimation

report

SCVT and MQ Tools

• SCVT (Samsung ConVersion Tool) is a tool that converts models trained with

various Deep Learning Frameworks to tailor to Samsung NPU.

– SCVT modifies an NN graph for more efficient processing in NPU.

• Combinatory operation into simple one, e.g., SpaceToBatchND+Conv2D+BatchToSpaceND Dilated Conv

• Add/Mul/Activation folding to weight and bias

– SCVT supports NN models exported to Caffe, TFLite (Scheme v3), or ONNX (IR 6+) format.

• MQ Tools quantize a neural network to be suitable for low-precision hardware

through three processes, Profiling, Quantization, and Compensation

– Profiling is a process to acquire statistics of the activations for each channel or layer when

lots of sample images entered into a network.

– Quantization is a process to determine an optimal fractional length of activations based on

the profiling as well as weights/biases.

– Compensation is a process to compensate biases by comparing between original model and

quantized model.

16/20

Performance Estimator
TFLite

TFLite

 modified prototxt

SCVT

SCaffe

TFLite SNC

 SNC prototxt

SNC

Core of Performance Estimator

(time estimation with Layer-by-layer operation)

 prototxt SNC

SNC

Caffe

prototxt
+caffe model

ONNX
ONNX
(limited
coverage)

ONNX SNC

SNC

Final output =
Total time
MAC time
DMA time

17/20

• Performance Estimator (PE)

– Estimate performance of NN models without

making them run on NPU, even w/o actual

weights

– Helpful to select model structures or update

models to get better performance

– Able to support Caffe, TFLite, and ONNX models

with the help of SCVT

• PE Limitation

– Layer-by-layer operation assumed

– Difference from actual performance, which

depends on optimization level of compiler

NN Compiler

• NPU Compiler converts quantized models to NNC executable for ENN User App.

– Input

• Model structure and weight including quantization information

– Output

• NNC file containing optimized program with ops to be executed on CPU/GPU/NPU by ENN Framework

18/20

NPULite-Gen

NPUC

Parser

NN

Model
Codegen

Caffe:Net NN Graph

NPUC Frontend

NPUC

Parser

Event

Schedule
Codegen

IR element IR element

NPUC Backend

NCP

Generation

CMDQ

Instrinsic

 Quantization model

 Compile Options

 SOC Type

 IR.json

 SOC Type

NNC

NCP.bin

Device driver

• Key functionality

– Serialization of NCP requests

• NPU DD enqueues NCP requests created by multiple linux tasks into a NCP request queue

• NPU DD serializes and transfers them to NPU so that NPU firmware can process them

Mailbox interface

NCP request

Exynos NN Driver

Exynos NN runtime

NPU User Driver

Exynos NN

Framework

Session manager

NCP request

queue manager

NPU

device

driver

Mailbox

command

Linux Kernel

VS4L interface

Application
Firmware

RTOS

Host CPU-side SW stack

NPU-side SW stack

19/20

Evaluation

623 555
1,107

1,190

0

200

400

600

800

1000

1200

1400

0

100

200

300

400

500

600

700
Inference/sec Inference/J

In
fe

re
n

c
e

s
/s

e
c

o
n

d

In
fe

re
n

c
e

s
/J

T
im

e
 (

m
s

)/
In

fe
re

n
c

e

Voltage (V)

0

1

2

3

4

5

6

Base +Skipping +Reconf. Multi
thread

Optimized DMA NPU compute

Multi-core

Single Core

30%

62.6%
389

0.9 0.8 0.7 0.6 0.5

• NPU achieves 623 inferences/s at 1196 MHz in multi-thread mode

• The energy efficiency of 0.84mJ/inf. (1190 Inf./J) were measured
– Corresponds to 13.6 TOPS/W for Inception-V3 including DMA power (not DRAM)

20/20

Samsung Secret

Samsung System LSI
for AI Everywhere

