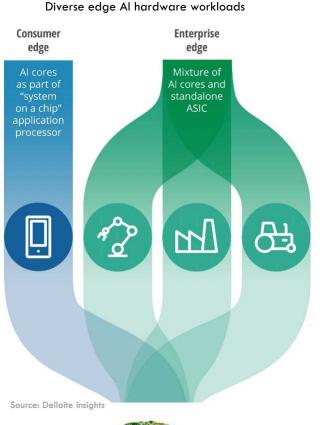


Dynamic Neural Accelerator for Reconfigurable & Energy-efficient Neural Network Inference

Nikolay Nez, Antonio N. Vilchez, Hamid R. Zohouri, Oleg Khavin and Sakyasingha Dasgupta

EdgeCortix

Unique Challenges for Al Inference Hardware at the Edge



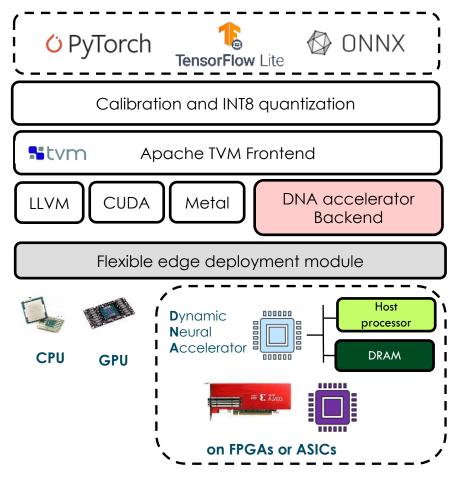
- Peak TOPS or TOPS/Watt are not ideal measures of performance at the edge. Cannot prioritize performance over power efficiency (throughput/watt)
- Many AI Hardware rely on batching to improve utilization. Unsuitable for streaming data (batch size 1) use-case at the edge
- Al hardware architectures that fully cache network parameters using large on-chip SRAM cannot be scaled down easily to sizes applicable for edge workloads.
- Need adaptability to new workloads and the ability to deploy multiple AI models
- Al-specific accelerator needs to operate within heterogenous compute environments
- Need for efficient compiler & scheduling to maximize compute utilization
- Need for high software robustness and usability

Software-defined Approach to AI-Specific Hardware Acceleration

- Part I Software: Multi-module Efficient Reconfigurable Accelerator (MERA) compiler
 - Efficient scheduling across multiple compute modules → Multi-module Efficient
 - Minimize on-chip ⇔ off-chip data movement
 - Early simulation and performance estimation
 - Seamless user experience
- Part II Hardware: Dynamic Neural Accelerator (DNA) architecture (IP series)
 - Run-time reconfigurability → Dynamic Neural Accelerator
 - High compute utilization and power efficiency
 - Performance and power efficiency scalability

Part I - MERA Compiler and SDK

EDGECORTIX MERA Compiler



- Extends the Apache TVM deep learning compiler
- Common for FPGA and ASIC
- Python and C++ interfaces
- No custom quantization required: PyTorch and TFLite

post-training quantization directly supported

- Automatic offloading of unsupported operators to CPU
- Built-in simulator: slow but accurate performance estimation
- Built-in interpreter: fast functional simulation

•

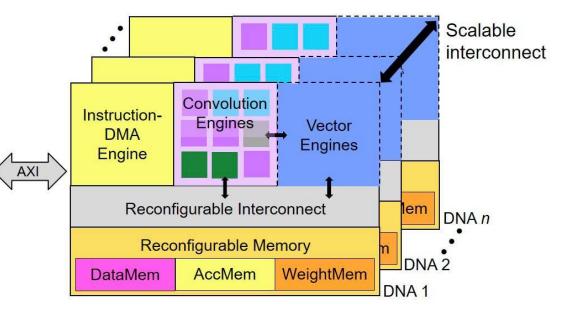
High-level Breakdown of the MERA Compiler Flow

MERA	Parse PyTorch / TFLite modelCalibration and quantization	ONNX TensorFlow Lite	
	 High-level graph partitioning (Apache TVM) 	Parse Network	Operator and Layer fusion
MERA Dependent	Low-level graph partitioning Target-dependent optimizations	Calibration & Quatization	Tiling
	 Operator and layer fusion Tiling (channel, height, width) Scheduling 	Graph Partitioning	Scheduling & Allocation
	 Exploits multiple forms of parallelism Maximizes compute utilization 	Executables	
	 Allocator Minimize data spill to external memory 	Host Dynamic Neur CPU Accelerator	al Interpreter Simulator

Part II - Dynamic Neural Accelerator Architecture

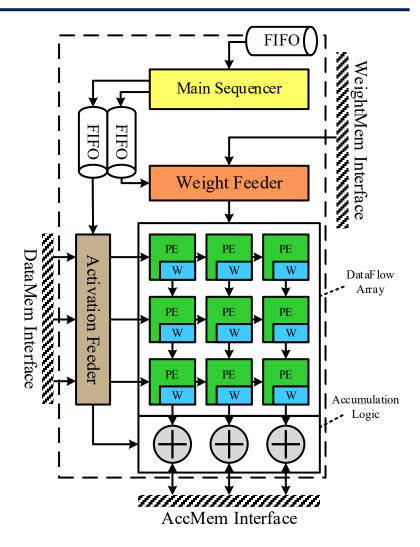
- Designed for low-latency and low-power with high compute utilization.
- Optimized instruction set for INT-8 bit
- Configurable and scalable compute and power
- Parallelism at model, tile, channel, and filter dimensions
- Optimized for streaming data (batch size 1)
- Run-time memory and interconnect reconfigurability
 - Adapt to varying network layer & model parallelism
- Support for external memory
 - Avoid limiting network support by on-chip memory size

Dynamic Neural Accelerator Overview



Peak Under the Hood of the Convolution Engines - I

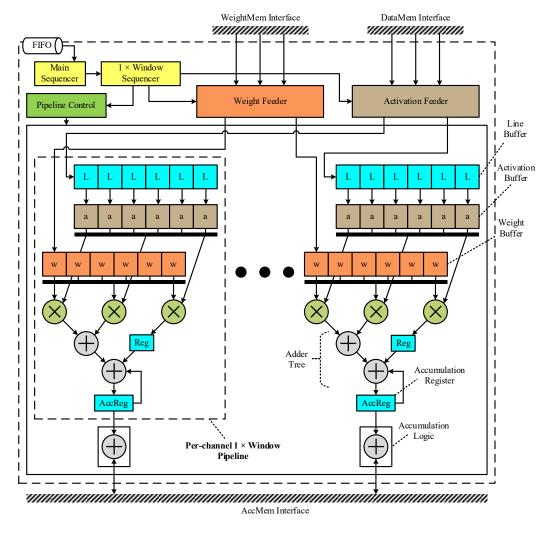
- DataFlow array-based architecture
- Parallelism in input and output channel, and filter row
- Array node has one PE and two weight registers
- Configurable parameters
 - Size of DataFlow array
 - Number of engines
- Example configurations
 - 1 engine of 32x32: 1.6 TOPS @ 800 MHz
 - 8 engines of 64x64: 52 TOPS @ 800 MHz



Peak Under the Hood of the Convolution Engines - II

- Multiple-parallel-pipelines design
- Parallelism in output channel and filter row
- Configurable parameters
 - Pipeline width
 - Number of parallel pipelines
 - Number of engines
- Example configuration

4 engines of 64 3-wide pipelines: 1.2 TOPS @800 MHz



Run-time Reconfigurability in DNA Architecture

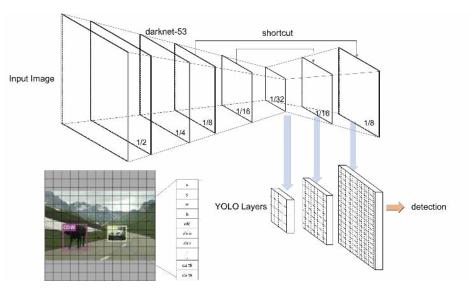
• Available degrees of parallelism vary greatly across neural

networks and network layers

Early layers: small channel sizes, large row/column sizes **Middle layers**: moderate channel and row/column sizes

Late layers: large channel sizes, small row/column sizes

- Fixed hardware parallelism results in low compute utilization in some layers
- Solution: run-time reconfigurable interconnect and memory structure
 - Efficiently mix different types of parallelism to improve utilization
- Reconfiguration can happen once per network or for some
 number of layers

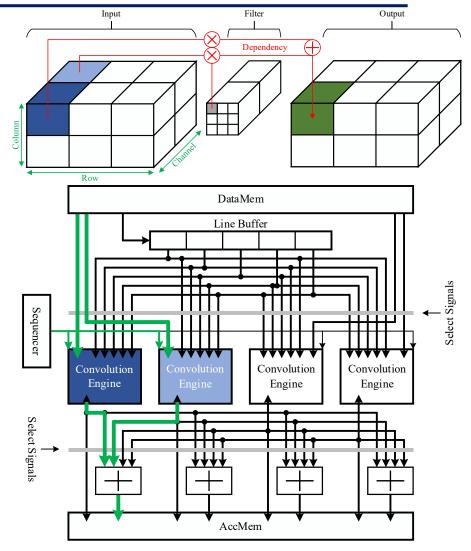


Schematic of the YOLOv3 network architecture

Reconfigurable Interconnect

Purpose

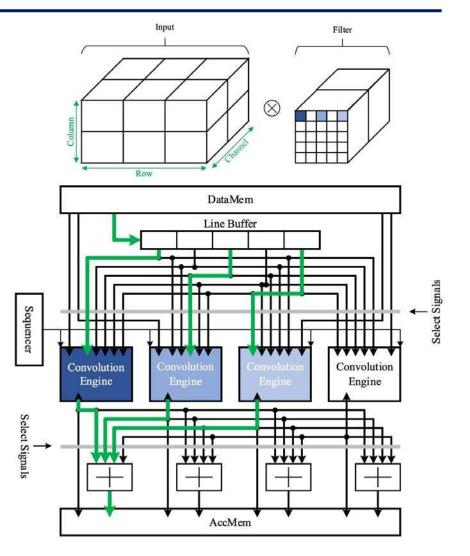
- Changing module connectivity
- Adding or removing modules to/from data flow



Reconfigurable Interconnect

Purpose

- Changing module connectivity
- Adding or removing modules to/from data flow



Reconfigurable Interconnect

Purpose

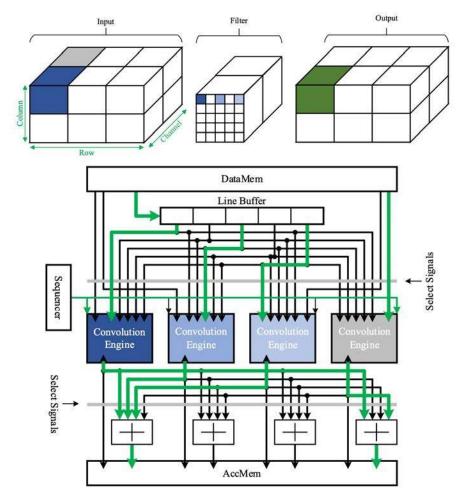
- Changing module connectivity
- Adding or removing modules to/from data flow

Efficient mixing of different types of parallelism

• Improves compute utilization

Implemented with circuit-switching

- Connectivity determined at compile-time
- Configured at run-time



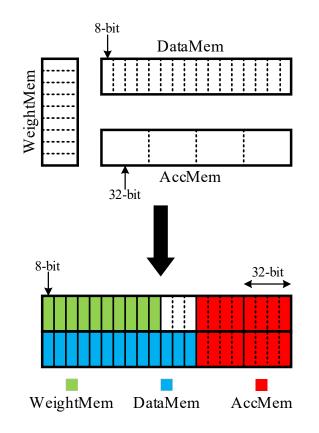
Reconfigurable On-chip Memory Structure

Purpose

- Virtual allocation of different memory types (Weight, Data, Acc.) in same physical memory structure
- Virtual combination of consecutive memory banks to create wider or deeper banks

Efficient on-chip memory allocation

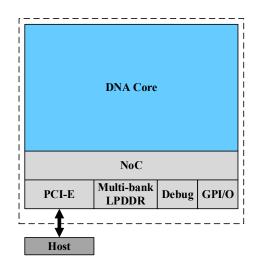
- Directly improves on-chip memory utilization
- Indirectly improves compute utilizations



One flexible memory type

DNA IP for ASIC in Different Configurations

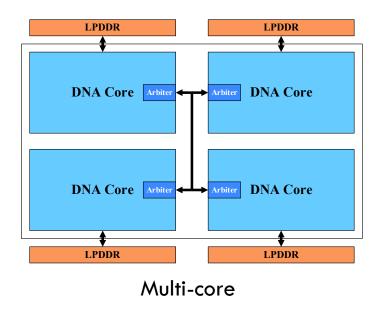
- DNA as a modular and configurable IP series for ASICs
- Typical configurations are provided as part of the DNA-A series
 - Different performance and power efficiency points
 - Ranging from 1.8 TOPS for under 0.6 Watts, to 54 TOPS for under 8 Watts @ 800 MHz (single core DNA)
- Multi-core and multi-chip scalability



PCI-E-based

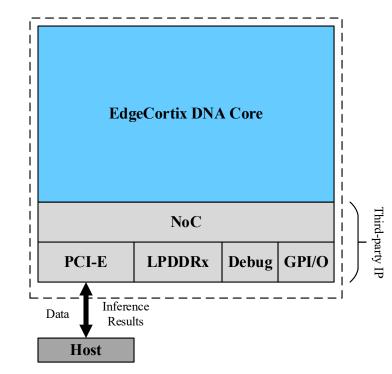
MIPIMulti-bank
LPDDRCAN/
EthernetISPARM CPUGPUDNA CorePower &
ClockSecurityDebug

System on Chip



*Grey boxes are third-party IPs

PCI-E Based Dynamic Neural Accelerator Demonstrator Chip

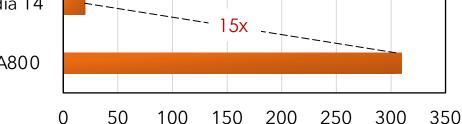


Coming Soon!

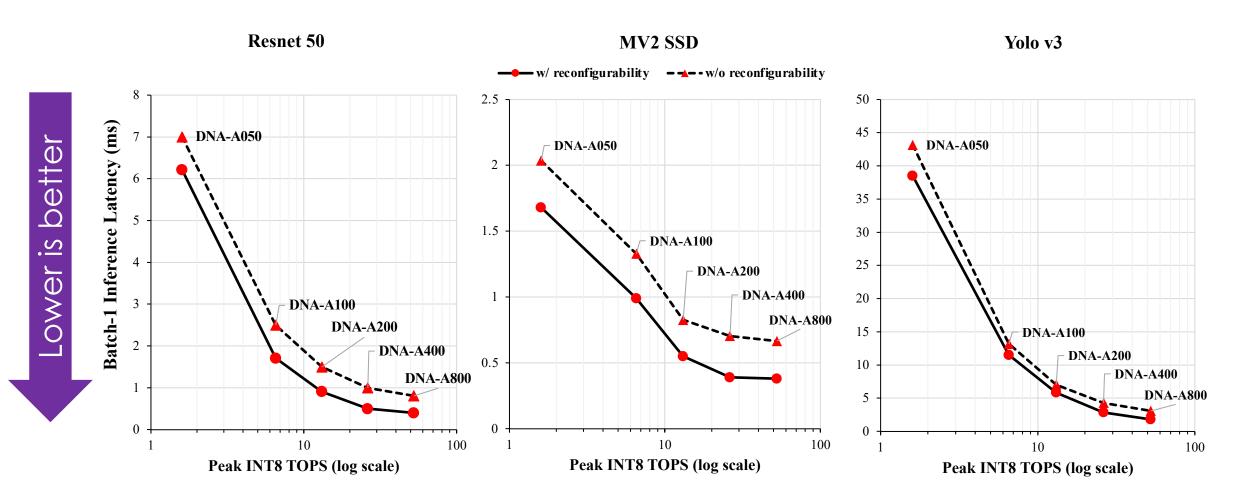
mPCI-E based Reconfigurable AI acclelerator chip

- DNA-A800 Configuration
- TSMC 12 nm @ 800 MHz
- 54 INT8 TOPS peak at under 10 watts
- 16x PCI-E 3.0 and M.2 (4x PCI-E 3.0)
- 2x LPDDR4x 4200 MHz

EdgeCortix DNA-A800



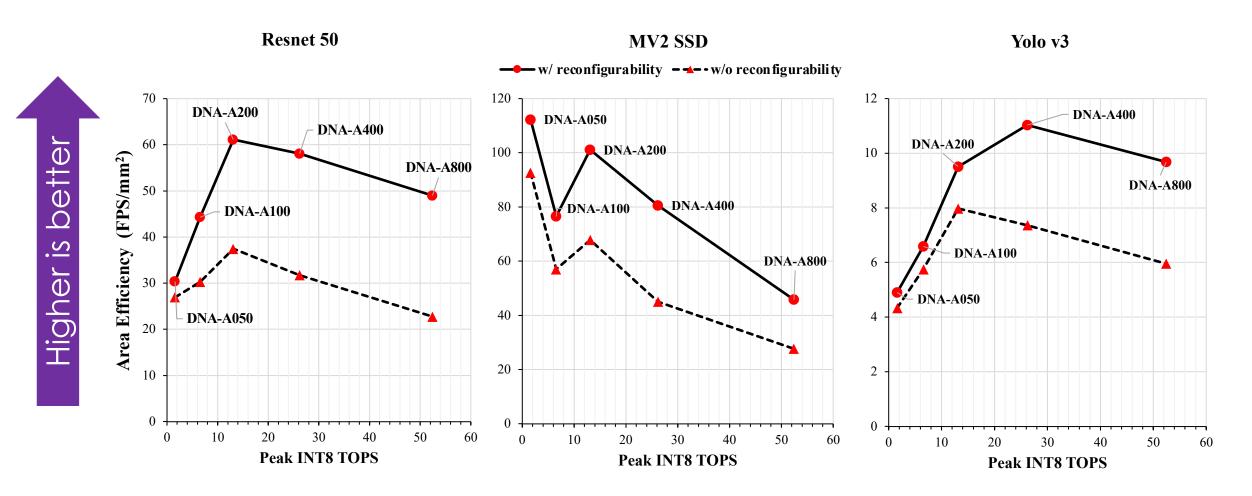
DNA A-series: Best in Class Batch size 1 Latency



All results verified with Cadence Xcelium Logic Simulation. Post-training quantized, no changes to original neural network model.

© 2021 EDGECORTIX. ALL RIGHTS RESERVED.

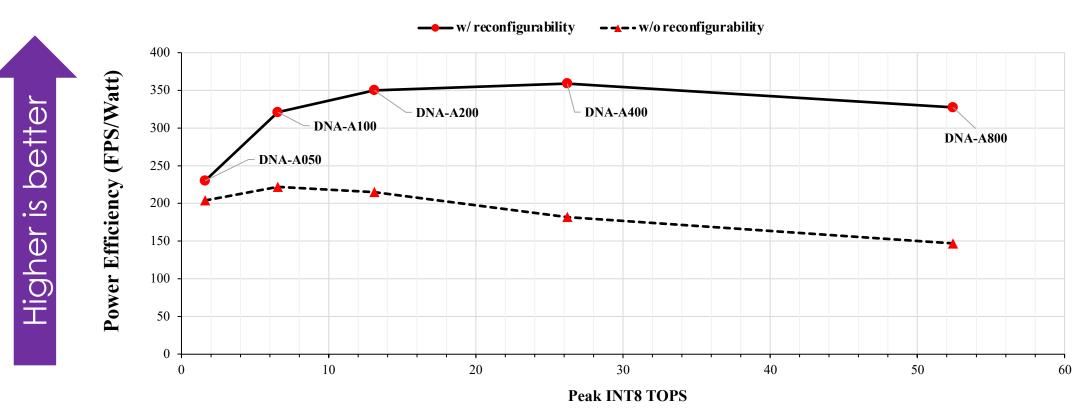
Improved Area Efficiency with Runtime Reconfiguration



FPS – Frames Per Second with batch size 1

© 2021 EDGECORTIX. ALL RIGHTS RESERVED.

Improved Power Efficiency with Runtime Reconfiguration

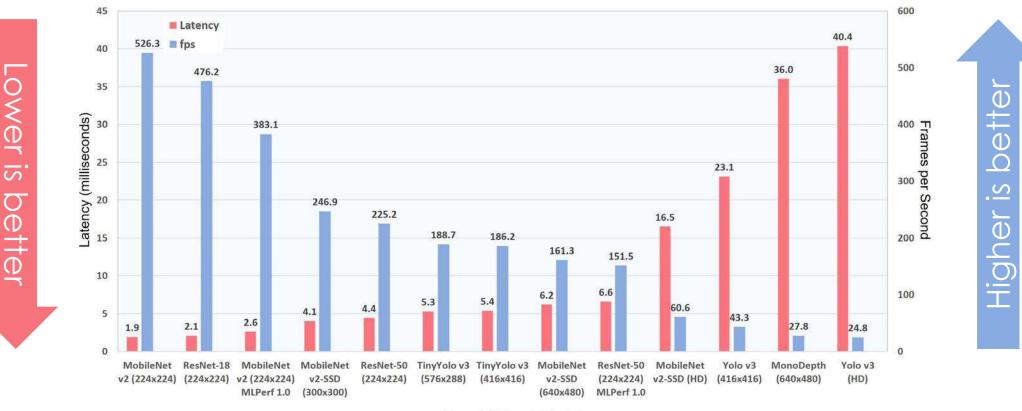


Resnet 50

FPS – Frames Per Second with batch size 1

Benchmarking the Performance of DNA IP with FPGAs

Using the DNA-F200v2 configuration optimized for FPGAs delivering 4.9 INT8 TOPS at 300MHz



Latency-optimized inference for batch size 1 DNN (original model without pruning)

Neural-Network Model

- Peak TOPS cannot be a proxy for performance without considering utilization
- Compiler efficiency and run-time reconfigurability are crucial to achieve high utilization for AI specific processors.
- Our software-first approach enables:
 - Realizing the compute potential of our IP through efficient graph optimization and scheduling
 - Minimizing user burden when switching from CPUs/GPUs to our IP
- Our run-time-reconfigurable IP enables:
 - Dynamically adapting to varying neural network/layer workloads
 - Maximizing scheduling freedom and minimizing unused compute resources
- EdgeCortix DNA-A-series IP for ASIC and corresponding family of IP for FPGAs called DNA-F-series is available today,

along with the MERA software stack for AI inference.

• For more details on the Dynamic Neural Accelerator – dna-ip@edgecortix.com

info@edgecortix.com

