

Hot Chips 33, August 24, 2021

New Value Creation by Nano-Tactile Sensor Chip Exceeding our Fingertip Discrimination Ability

Hidekuni TAKAO and Kazuki WATATANI Kagawa University, JAPAN

Kazutami ARIMOTO Okayama Prefectural University, JAPAN

Texture Discrimination and Quantification

New Value Creation in Future Applications

Quality Control

- Health Care
- **Remote Treatment**

H/M Interface

Our Sense of Touch

Distributed Receptors under the Elastic Skin Structure

How Do We Feel the Surface Texture?

Tactile Sensors at Present

Flexible Sensors (ex. Organic Semiconductors) for Wide Area Body Skin

Silicon-MEMS Sensors for Findertip Like Sensation

N. Sato, K. Machida et al. NTT Corporation, Japan

Metal Strain-gauge

M. Sohgawa, M Noda et al. Osaka University, Japan Kyoto Institute of Tech., Japan

戦略的創造研究推進事業

O. Paul, P. Ruther et al. IMTEK, Univ. of Freiburg, Germany

Piezoresistive

We Use Silicon as Texture Sensor Material

Silicon as an Electron Device Material

- Ideal for Integrated Circuits
- Suitable for Strain Sensor
- Multifunctional Integration

Silicon as a Mechanical Device Material

- Ideal Mechanical Deformation
- Supple Structure by Micromachining
- Faster Response and Motion

Tactile Sensor Made of Silicon can Realize;

- High Spatial Resolution (~1µm or less)
- High Time Resolution (~2kHz or more)
- High Signal Resolution (~10µN or less)

"Basic Nano-Tactile Sensor" Surface Shape Friction ¥ 23 1mm 19 40 SEI Contactor tip

Reference plane

Contactor Sticking out from the Plane

Frictional Force Detectors Surface Shape Detector

50µm

7

Similarity: Single Fingerprint Sensor

"Model of Fingerprint of Human" T. Maeno et al. JSME C, Vol. 71, No.701, pp. 245-250, 2005

Nano-Tactile Sensor Device Kagawa University CREST Project

Similarity: Single Fingerprint Sensor

Nano Tactile Sensor Chips on Wafer

Similarity: Single Fingerprint Sensor

Nano Tactile Sensor Chips on Wafer

"Soft Cloth" Measurement

Plain Stich Cloth

Tactile Waveforms on Plain Stich

Tactile Sense Obtainable in Submicron!

Tactile Waveform on Human Hair

Tactile Waveform on Human Skin

1st-Gen."Touch-Feeling Scanner"¹⁶

Structures of Paper Surface

High Quality Paper (Smooth and Low Friction) Low Quality Paper (Rough and Connective)

- Difference of surface appearance is unexpectedly small.
- Nano-Tactile Sensor can distinguish the small difference.

Touch Feeling Data of PAPERs

Very Small Difference (Tissue Papers)

A. Nepia's Nepi-Nepi (0.2JPY/Sheet)

B. Nepia's Premium Soft (0.3JPY/Sheet)

C. Nepia's Japan Premium (1.0JPY/Sheet)

D. Nepia's Hana-Celebrity (2.0JPY/Sheet)

E. Kleenex's Shikou (5.0JPY/Sheet)

G. Elleair's Zeitaku-Hoshitsu (1.5JPY/Sheet)

Neural Network for Tactile Discrimination

Confusion Matrix (Deep Learning)

Confused Matrix (Human's Finger)

KAGAWA

UNIVERSITY

Learning and Training for 20min. 1

22

- 2 "Vision Removal" with Eye Mask
- **Discrimination Test with Samples** 3

Average Age: 22

			Out	put	Pro	pap	IIIty					
		А	В	С	D	Е	F	G				
	A. Nepia's Nepi-Nepi	0.56	0.25	0.00	0.13	0.00	0.06	0.00				
tion Input	B. Nepia's Premium Soft	0.67	0.13	0.00	0.13	0.00	0.07	0.00				
	C. Nepia's Japan Premium	0.00	0.23	0.23	0.08	0.08	0.23	0.15				
	D. Nepia's Hana-Celebrity	0.07	0.07	0.21	0.29	0.00	0.07	0.29				
lua	E. Kleenex's Shikou	0.00	0.00	0.07	0.07	0.71	0.00	0.14				
Eva	F. Elleair's lotion Ufu	0.00	0.20	0.20	0.20	0.07	0.07	0.27		Corre	ct Ans	wer
	G. Elleair's Zeitaku-Hoshitsu	0.00	0.39	0.00	0.08	0.15	0.23	0.15	+	3	31%	

The Larger the Data Volume, the Higher the Correct Percentage of Discrimination in DNN

Trained Sensor vs. Human

Similarity: Multiple Fingerprint Sensor

"Model of Fingerprint of Human" T. Maeno et al. JSME C, Vol. 71, No.701, pp. 245-250, 2005

Nano-Tactile Sensor Array The Latest Device realized in 2018 H. Takao et al., IEEE MEMS2019

Structures

2nd Generation Sensor Chip (6 Array)

2nd Generation Sensor Chip (6 Array)

Distributions of Tactile Information

Distributions of Tactile Information

Directional Touch Feeling Discrimination

100µm-Resolution Elasticity Distribution³¹

2nd-Gen."Touch-Feeling Scanner"

Additional Information: Skin Hardness

Conclusions

Nano-Tactile Sensor Chip realizes 0.5µm-spatial resolution and below 50µN-force resolution that are the Highest Performances among tactile sensors.

Combination of Deep N.N. with The Nano-Tactile Sensor Chip has distinguished 7-types of Tissue Papers at 80% accuracy (Human is around 30%).

System performance can be more enhanced by Visualized Hardness Distribution at 100µm spatial resolution.

"Nano-Tactile Sensor" Will Come in 2022

TOUCHENCE Inc. JAPAN http://touchence.jp/en/

"Shokac Probe" Sensor http://touchence.jp/en/products/probe.html

•	•	·	•	·	·	·	•	•	•	•	4	•((9	•		•		·	•	·				 About										•		Co	Contact Us				
*		•			•	•	•	٠		•	IC	DU	h	90	e	•	1	•	•			auc			·	•		npa	i iy	•	ecru	•		5005	•		00	mac	.1 05		
÷	•		•						•		•	•	\cdot	\cdot	(\cdot)	•	•	•		•		\mathbf{x}			•	•	•	•	\odot			•	•	•							
•	÷					•			•	•	÷	÷			•	•	÷					•	•		•	•		•	•			÷	•	•	•			•	•		
														•	•																										
																																		-							
											Sh	okad	: Se	ries																											
•		•					•			•			•					•							•	•								1	Ċ				1	•	
•		•		•		•	•	•	•	•	C			J.			_	Ò		~	h	~	Τ̈́Ν	1	•	•		•		•		•		1		•			(*)	•	•
•		·	•	•	•	•	•	•	•	•	C)1	IC)ł	Ś	1(5	r	1	0	U	e	•	•	•	•		•	•	•	•	•	1	•	*	-		(national sectors)	•	•	•
•	•	•	•	•				*	•	•	•	•	•		•	*	•	•	•	•	•			8	•	•	•	·	٠	*	•	•	1.		A	7	-	•	•	٠	•
•		•		•	•	*	•	•	•	•	Qu	iant	ifie	sta	acti	lė f	eel	, us	ing	fin	ger	prin	nts	for	refe	ere	nċe		•		•	1	14/			1	-		•/		
•	•	•			•	•	•	•	•	•	Ťh	ie e	en	or	car	n și	mil	tan	eòi	isiv	me		ILA	min	ute		rfa			•	•	1.					1		+		•
			•												•	:	, ·	•	:	, siy	1.			•	•	• •	•	•		. • :		•			1		7.		1.		
											irr	egu	lar	tie:	s ar	1d c	haı	nge	s ir	i fri	ctic	onal	101	ces.	š.						1.							. /			
																													14							2		1			
								-			.01	once	prua	iima	ge					-				-						1		-	-					1			
•		•	-	•		•	•	•	•	•	•	•	•	-	•	•	•	•	-	-	•			•	•	•		•						•		•	•			•	•
•	1	•	*	•	•	•	•	٠	•	•	*	1	•	•	•			•	•	•	•	•	•	•	·	•	1	*	1	•	•	•	*		•		1	٠	•	*	•
8	•	•	•				•	*	·	٠	•	•	•		•	*	•	٠	•	•	•			•	•	•	•		1.	٠	•	•	•		•		1.	۲			•
•	÷	•	•	•	•	•	•	•	٠	•	÷.	•	\odot	(\cdot, \cdot)	•	•	1.	•	•	•	e		•	•	•	•	×.	1	•	101	•			•		/					÷
•		•		•				•						•		•		•					•	•				1.								1			- •		

Acknowledgements

This research has been partially supported by the competitive funding programs in JAPAN

- JST CREST (Grant Number JPMJCR1531)
- JST CREST (Grant Number JPMJCR20C2)
- JST A-STEP Stage II Program
- JSPS KAKENHI (Scientific Research (A)17H01271)

The presenters thank to their cooperation;

- Prof. Toru Shimizu (Toyo University, JAPAN)
- Prof. Kinya Kumazawa (JAPN Inst. Invention and Innovation)
- Prof. Yusaku Maeda (National Institute of Tech. Kagawa)
- All the Staff with Micro-Nano Structure Device Integrated Research Center in Kagawa University, JAPAN
- All the Staff and Students with Takao CREST Team

