Qualcomm®
Cloud AI 100
12 TOPS/W Scalable, High Performance and Low Latency Deep Learning Inference Accelerator

Karam Chatha
Senior Director, Engineering
Qualcomm Technologies, Inc.
Future of AI in Data Center Demands Breakthrough Technology

Compute power not keeping up with business needs to deliver best in class services

AI Ubiquitous in Data Center
- AI fundamental for next gen business analytics for best customer experience and insights
- Velocity of insight key to business leadership

Infrastructure Under Pressure
- Staying ahead of the AI curve is increasing demand on infrastructure cost and power

Heterogeneous Approach
- Energy-efficient inference acceleration enables AI to scale beyond constraints of general-purpose servers
- AI computation on optimized hardware reduces data center Opex and frees up server resources to drive business value application software

Need for high performance and power efficient inference accelerator in Data Centers

Source: *Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications – Nov 2016*
13 Years of AI research

6 Generations of Inference Engines

2016
Snapdragon 820 introduction to the Qualcomm® Hexagon™ Vector eXtensions for more powerful AI processing

2017
3rd generation AI engine with Snapdragon 845 enabling an AI-based voice assistant

2018
4th generation AI engine with Snapdragon 855 first Tensor Accelerator bringing 7 TOPs and enabling AI based single-mic noise cancellation

2019
5th generation AI engine with Snapdragon 865 featuring the first on-device real time voice translation powered by 15 TOPS

2020
6th Gen AI engine with Snapdragon 888 re-engineered Qualcomm® Hexagon™ 780 Processor features a fused AI-accelerator architecture and brings the total Qualcomm AI Engine performance up to an astonishing 26 TOPS

Present
Qualcomm Cloud AI 100 scalable across Cloud to Edge

High performance, low power architecture for Datacenter to Edge

Utilizes over a decade of research and development delivering high-performance, low power deep learning inference acceleration technology

Focus on ML inference across Cloud and Edge applications

Collaborating with industry leaders for first-generation success

Architecture for scalable technology across generations
Multi-core architecture
- Up to 16 Qualcomm® AI Cores

Peak TOPs
- 400+ Int8, 200+ FP16

Up to 144 MB on chip memory

186 GB/s NoC (inter AI core) bandwidth
- Support for multicast and AI core synchronization

8 lane PCIe Gen4
Up to 136 GB/s 4x LPDDR4x
Secure boot
Reliability – ECC, MBIST, PCIe ASIL-B, LBIST
Power management – transient, peak, thermal

Qualcomm Cloud AI 100 SoC: Overview
Bespoke high-performance architecture for deep learning inference in Cloud and Edge
Scalar - VLIW architecture
• 4 Way VLIW
• Rich instruction set (over 1800+ instructions)
• Multi-threaded scalar core
• 1MB L2 cache
• Precision - FP32, FP16, Int16, Int8

Vector tightly couple memory (VTCM)
• 8MB memory that reduces DDR spillage
• Accessible by scalar, vector and tensor units

Vector unit
• Rich instruction set for AI, CV and image processing (over 700+ instructions)
• Precision - FP32, FP16, Int16, Int8
• 512 Int8 MAC/clock cycle
• 256 FP16 MAC/clock cycle

Tensor unit
• High performance and low power accelerator for linear algebra (125+ instructions)
• Precision - FP16, Int8
• 8192 Int8 MAC/clock cycle
• 4096 FP16 MAC/clock cycle

Qualcomm AI Core
Low power and high-performance deep learning inference
Qualcomm Cloud AI 100 SoC

Power efficiency

SoC Power	12.05 W	19.74 W	69.26 W
TOPs	149.01	196.94	363.02
SoC TOPs/W	12.37	9.98	5.24

Performance and power measured for typical 3x3 convolution operator (Int8) found in deep convolution neural networks (DCNN). Input activation assumes 50% zeroes which is typical for DCNN with Relu operators. Weights are uniformly distributed.

Industry leading TOPS/W for deep learning inference

SoC architecture specialized for AI inference
- Multi-core architecture with up to 16 AI cores
- Software managed 144 MB of on-chip memory
 - Reduces DDR BW and power
 - Enables on-chip storage of entire weights for many networks
- High BW on-chip NOC (with multicast support)
 - Enables splitting network operators across cores
 - Network activations are shared via multicast

Utilize industry leading low power IP from mobile
- 6th generation AI core (DSP + AI acceleration)
- Tensor unit is 5X more power efficient than a vector unit
- 8 MB memory per core maximizes data re-use and lowers power

Advanced technology node – 7nm

Compiler (software) defined multi-core schedule optimizing power and performance
Qualcomm Cloud AI 100
Parallelizing Compiler

Key component for delivering power efficient performance on multi-core architecture

Translates high-level description of neural network into machine code

- Parallelizes inference computation across the multi-core SoC
- Splits data across the AI cores and synchronizes computation
- Parallelizes across tensor/vector/scalar operations within an AI core
- Supports Int8, FP16 and mixed precision operations
- Optimizes KPI – inf/s, latency, power
- Performs optimizations in 3 phases

Graph
High level optimization
Inst level optimization
LLVM IR level optimization

Lowering

Optimizations types
High level graph optimization. Focus on linear algebra.
Low level instruction optimizations. Focus on buffer and memory reuse optimizations.
Lower level optimizations.
By Output Channel

- Each AI core processes subset of kernels
 + Less duplication of weights (VTCM)
 - Increased multicast to share results
- Best model for VTCM usage but more multicasting of activations

By Batch

- Input is split in batch dimension
 + Reduced multicasting
 - Increased VTCM usage for weights and activations
- Worst model for VTCM memory but best performance if network fits completely

By Spatial Dimension

- Input is split spatially in X,Y dimensions.
 + Reduces size of intermediate activations so less multicasting
 - Duplication of weights on AI cores
- Trades VTCM space for reduced multicast traffic

Parallelization trade-offs
Low power optimizations

Compiler driven optimizations for improving power efficiency

Depth first scheduling
- Minimizes spillage to DDR by processing the network graph in a depth first manner
- Reduces DDR power consumption, and improves performance
- Particularly effective for large resolution images
- RN34-SSD - 5.3X lower DDR BW, 3.5X higher inf/sec, 2X higher inf/sec/W

Scheduling to minimize peak power excursions
- Schedules the network graph across ML cores such that computation is not correlated

Instruction usage-based power management
- Compiler generates metadata for power management controller
Qualcomm Cloud AI 100 peer-to-peer communication

Partition network across multiple Qualcomm Cloud AI 100 cards
- Performance boost when network fits entirely in TCM across multiple cards
- Support for networks that might exceed card DDR capacity

PCle switch for peer-to-peer transfer between cards
- Transparent to the host
- Low latency data transfer between peers

Host
PCle switch
Qualcomm Cloud AI 100 Card 0
Qualcomm Cloud AI 100 Card 1
Qualcomm Cloud AI 100 Card 15
AI Model Efficiency Toolkit

Quantization and compression for high performance inference

- Improved/Robust quantization for INT16,8,4
- Quantization aware training with range learning
- Model Compression
- Mix precision support
- Opensource
<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Precision</th>
<th>25 W Card TDP</th>
<th></th>
<th>75W Card TDP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Performance (inf/s)</td>
<td>Efficiency (inf/s/W)</td>
<td></td>
<td>Performance (inf/s)</td>
</tr>
<tr>
<td>ResNet50v1.5</td>
<td>Int8</td>
<td>11118</td>
<td>553</td>
<td>22252</td>
<td>370</td>
</tr>
<tr>
<td>ResNet34-SSD</td>
<td>Int8</td>
<td>234</td>
<td>11</td>
<td>424</td>
<td>7</td>
</tr>
<tr>
<td>MobileNetv1-SSD</td>
<td>Int8</td>
<td>12499</td>
<td>582</td>
<td>23198</td>
<td>335</td>
</tr>
<tr>
<td>BERT Base</td>
<td>Mixed</td>
<td>1952</td>
<td>100</td>
<td>3688</td>
<td>54</td>
</tr>
<tr>
<td>BERT Large</td>
<td>Mixed</td>
<td>620</td>
<td>29</td>
<td>1084</td>
<td>15</td>
</tr>
</tbody>
</table>

Measurements with ML Commons™ data set
BERT benchmarks (Base and Large) at sequence lengths of 128
Benchmarks – Performance versus batch size/latency

Peak performance with batch sizes of 4 and 8. Smaller batch sizes imply low latency for high performance.
ResNet50 – Compression with AIMET

~15% increase in ResNet50 performance for 1.1% reduction in accuracy (mAP of 75.06)
Qualcomm Cloud AI 100 scalability

Performance and power scalability, across multiple platforms

Qualcomm Cloud Edge AI 100 Development Kit
- Snapdragon 865
- Qualcomm Cloud AI 100 (DM.2e)
- Snapdragon X55 5G Modem
- >50 TOPs of AI processing
- 15W TDP, passive cooled

Gigabyte G292-Z43 Cloud Inference Server
- Supports up to 16x PCIe HHHL
- 6 Peta Ops of AI processing
- 2200W TDP, active cooled
Qualcomm Cloud AI 100
addressing edge-to-cloud industries

Data Center / Cloud Edge

5G Edge Box

ADAS

5G Infrastructure
Thank you

Follow us on: f y i n o
For more information, visit us at:
www.qualcomm.com &
www.qualcomm.com/blog

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2021 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners.