
Morpheus II: A RISC-V Security 
Extension for Protecting Vulnerable 

Software and Hardware

Todd Austin
University of Michigan / Agita Labs

austin@umich.edu

Joint work with:
Austin Harris (UT), Tarunesh Verma (UM), Shijia Wei (UT),

Lauren Biernacki (UM), Alex Kisil (Agita Labs), Misiker Aga (Agita Labs), 
Valeria Bertacco (UM), Baris Kasikci (UM), Mohit Tiwari (UM)



Assessing the (Dour) State of 
Today’s Security Defenses

2



3

Who Can We Trust? Attackers Within and Without



• Software protects data
• All software is (eventually) hackable
• Finding/fixing vulnerabilities doesn’t scale
• E.g., Malicious 7: buffer errors, code injection,

numeric errors, permissions, resource mgt

• Side channels abound
• Control, memory, timing, cache, speculative
• Performance-centric design creates side channels
• E.g., Malicious 7: crypto errors, information

leakage, resource mgt

4

Because Here There Be Two Powerful Dragons



5

Assessing Today’s Security Capabilities
• What we do well:

• Finding and fixing vulnerabilities

• Deploying system protections that
stop well-known attacks

• Where we fail: identifying and
stopping emergent attacks

Synopsys’
Coverity Tools

Intel’s
Control-Flow 
Enforcement

ARM’s 
TrustZone

Valgrind



Can hardware security defenses 
be built to be more durable?

6



7

Morpheus’ Unique Approach to Security

Randomization Defenses (w/Churn)
• Code representation
• Code layout (absolute and relative)
• Code pointer representation
• Function pointer representation
• Return pointer representation
• Data pointer representation
• Data layout (absolute and relative)
• Microarchitectural mappings

Attack Detector
• Buffer overflow
• Code pointer arithmetic
• Data pointer logical operation
• Code forgery
• Pointer forgery
• Uninitialized variable access
• Mem permission violation
• Integer overflow
• Shift overflow
• Code read
• Cyclic interference

or every 
50 ms

504 bits of
true random

entropy



8

Morpheus: A Puzzle that Computes

Alex Kisil

Mark Gallagher

Lauren Biernacki



• Morpheus attack detectors discern normal 
code from malicious code, via undefined 
semantics

• To stop unknown attacks, Morpheus 
continuously encrypts undefined program 
assets, a process called “churn”

• Churning undefined assets breaks 
malicious security attacks, but has no 
effect on normal software

• Learning mechanisms can record and 
prioritize successful defense strategies 
to speed up protections

Morpheus Deploys Encryption and Churn

void target() {
printf("You overflowed, gg");
exit(0);

}

void vulnerable(char* str1) {
char buf[5];
strcpy(buf, str1);

}

int main() {
vulnerable("ffffffffffffffff\xf0\x01\x01\x00");
printf("This prints for normal control flow");

}

Undefined: return 
address store

Undefined: target() 
address forgery

Undefined: 
array overflow

9



~50 ms

Pr
ob

e

C
hu

rn

Pr
ob

e

C
hu

rn

Pr
ob

e

C
hu

rn

C
hu

rn . . .With Churn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn . . .With Adaptive

Churn and
Memory

Morpheus Breaks Emergent Attacks
Pr

ob
e

Synthesize Attack

Su
cc

es
s

Conventional
Attack

Synthesize Attack
Pr

ob
e

Su
cc

es
sWith

Randomized
Critical
Assets

ms

hours+

~2 ms

10



Morpheus II RISC-V Extensions 
and Microarchitecture

11



• Always-encrypted code is physically isolated when decrypted

• Always-encrypted pointers are physically isolated when decrypted
• Pointers are accessed with RISC-V instruction set extension

• No tagging required because we universally change code/pointer format
• This is not a problem for normal software

• Pointer tests are leaky, so use churn to limit utility of side channels
• Churn re-encrypts program assets while the system is running

12

Morpheus Code and Pointer Defenses

Opcode Semantics
dst := ptr1 <op> ptr2 Pointer arithmetic: +,-
dst := ptr1 <rel> ptr2 Pointer test: <,>,==, !=,…
dst := load/jump (ptr) Dereference: ->, *

Legend:
Green = decrypted
Red = encrypted



• Built to stop remote code execution (RCE)
• Built on the RISC-V Rocket Core
• Always-encrypted code
• Always-encrypted code pointers

R
an

do
m

 
M

ap
pi

ng

13

Morpheus RISC-V Microarchitecture

IF ID EX MEM
(read-only)

WB
(reg/mem)

Decrypt
Auth

Decrypt
Code-ptr

Encrypted D-CachesEncrypted I-Caches

Encrypted RAM
and Disks

Stops:
• Disclosures
• Foreshadow

Stops:
• Jailbreaks
• Cold-boot

attacks

Stops:
• Code injection
• Rooting
• ROP analysis

Stops:
• Buffer overflow
• ROP
• Return-to-libc
• COOP

Austin Harris

Tarunesh Verma



Morpheus II Performance, Area 
and Security Analysis

14



• Integrated into the RISC-V Rocket Core
• Only 369 lines of Chisel code added

• Deployed in a Xilinx UltraScale+ FPGA
• Utilized a 12-round Simon cipher
• < 1% performance overhead
• 0.2% power overhead
• 1.3% area overhead
• Negligible impact to network apps

15

Morpheus Design Overheads



• 32-bit Morpheus entered FETT
• Deployed on AWS F1 FPGAs
• 535 attackers were recruited for 3 months
• Worked for sizeable bug bounties

• Running a mock medical DB
• Only 3 lines of code changes required!
• Attackers had to penetrate the target (RCE)

• Toward the end of the program, a
“high-value payout” was created

• For a Morpheus SQLite-to-RCE attack

• Morpheus was the second-most engaged 
target in FETT

• Morpheus was penetrated ZERO times

16

Putting Morpheus to the Test

SQLite

Patient
Data

Patient
Data

Differentially
Private

Statistics

REST API

FreeRTOS

M3DB



• Why is Morpheus hard to hack?
• Always-encrypted pointers deny attackers ability to forge/analyze code/pointers
• Churn places a time-limit on replay attacks and probing results
• Morpheus attacks must be bespoke and lightning-fast (stochastic attacks)

• Lean into secure systems with durable security mechanisms
• Avoid non-durable mechanisms: software, resource sharing, leaky operations
• Time-Tested Cryptography, examples: RSA, AES, SHA-2
• Physical Isolation, examples: TPMs, Intel CAT

• Next-generation Morpheus-derived technology is being deployed
• Provides highly secure secret computation
• Based on cryptography and physical isolation based defenses
• Deployed in the Microsoft Azure and Amazon AWS clouds

17

Morpheus’ Evolution and Beyond

Shibo Chen



Questions?

?

??

?

? ?

? ?

?

?
?

austin@umich.edu


