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Assessing the (Dour) State of 
Today’s Security Defenses
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Who Can We Trust? Attackers Within and Without



• Software protects data
• All software is (eventually) hackable
• Finding/fixing vulnerabilities doesn’t scale
• E.g., Malicious 7: buffer errors, code injection,

numeric errors, permissions, resource mgt

• Side channels abound
• Control, memory, timing, cache, speculative
• Performance-centric design creates side channels
• E.g., Malicious 7: crypto errors, information

leakage, resource mgt
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Because Here There Be Two Powerful Dragons
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Assessing Today’s Security Capabilities
• What we do well:

• Finding and fixing vulnerabilities

• Deploying system protections that
stop well-known attacks

• Where we fail: identifying and
stopping emergent attacks

Synopsys’
Coverity Tools

Intel’s
Control-Flow 
Enforcement

ARM’s 
TrustZone

Valgrind



Can hardware security defenses 
be built to be more durable?
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Morpheus’ Unique Approach to Security

Randomization Defenses (w/Churn)
• Code representation
• Code layout (absolute and relative)
• Code pointer representation
• Function pointer representation
• Return pointer representation
• Data pointer representation
• Data layout (absolute and relative)
• Microarchitectural mappings

Attack Detector
• Buffer overflow
• Code pointer arithmetic
• Data pointer logical operation
• Code forgery
• Pointer forgery
• Uninitialized variable access
• Mem permission violation
• Integer overflow
• Shift overflow
• Code read
• Cyclic interference

or every 
50 ms

504 bits of
true random

entropy
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Morpheus: A Puzzle that Computes

Alex Kisil

Mark Gallagher

Lauren Biernacki



• Morpheus attack detectors discern normal 
code from malicious code, via undefined 
semantics

• To stop unknown attacks, Morpheus 
continuously encrypts undefined program 
assets, a process called “churn”

• Churning undefined assets breaks 
malicious security attacks, but has no 
effect on normal software

• Learning mechanisms can record and 
prioritize successful defense strategies 
to speed up protections

Morpheus Deploys Encryption and Churn

void target() {
printf("You overflowed, gg");
exit(0);

}

void vulnerable(char* str1) {
char buf[5];
strcpy(buf, str1);

}

int main() {
vulnerable("ffffffffffffffff\xf0\x01\x01\x00");
printf("This prints for normal control flow");

}

Undefined: return 
address store

Undefined: target() 
address forgery

Undefined: 
array overflow
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~50 ms
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Morpheus II RISC-V Extensions 
and Microarchitecture
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• Always-encrypted code is physically isolated when decrypted

• Always-encrypted pointers are physically isolated when decrypted
• Pointers are accessed with RISC-V instruction set extension

• No tagging required because we universally change code/pointer format
• This is not a problem for normal software

• Pointer tests are leaky, so use churn to limit utility of side channels
• Churn re-encrypts program assets while the system is running
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Morpheus Code and Pointer Defenses

Opcode Semantics
dst := ptr1 <op> ptr2 Pointer arithmetic: +,-
dst := ptr1 <rel> ptr2 Pointer test: <,>,==, !=,…
dst := load/jump (ptr) Dereference: ->, *

Legend:
Green = decrypted
Red = encrypted



• Built to stop remote code execution (RCE)
• Built on the RISC-V Rocket Core
• Always-encrypted code
• Always-encrypted code pointers
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Morpheus RISC-V Microarchitecture

IF ID EX MEM
(read-only)

WB
(reg/mem)

Decrypt
Auth

Decrypt
Code-ptr

Encrypted D-CachesEncrypted I-Caches

Encrypted RAM
and Disks

Stops:
• Disclosures
• Foreshadow

Stops:
• Jailbreaks
• Cold-boot

attacks

Stops:
• Code injection
• Rooting
• ROP analysis

Stops:
• Buffer overflow
• ROP
• Return-to-libc
• COOP

Austin Harris

Tarunesh Verma



Morpheus II Performance, Area 
and Security Analysis
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• Integrated into the RISC-V Rocket Core
• Only 369 lines of Chisel code added

• Deployed in a Xilinx UltraScale+ FPGA
• Utilized a 12-round Simon cipher
• < 1% performance overhead
• 0.2% power overhead
• 1.3% area overhead
• Negligible impact to network apps
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Morpheus Design Overheads



• 32-bit Morpheus entered FETT
• Deployed on AWS F1 FPGAs
• 535 attackers were recruited for 3 months
• Worked for sizeable bug bounties

• Running a mock medical DB
• Only 3 lines of code changes required!
• Attackers had to penetrate the target (RCE)

• Toward the end of the program, a
“high-value payout” was created

• For a Morpheus SQLite-to-RCE attack

• Morpheus was the second-most engaged 
target in FETT

• Morpheus was penetrated ZERO times
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Putting Morpheus to the Test

SQLite

Patient
Data

Patient
Data

Differentially
Private

Statistics

REST API

FreeRTOS

M3DB



• Why is Morpheus hard to hack?
• Always-encrypted pointers deny attackers ability to forge/analyze code/pointers
• Churn places a time-limit on replay attacks and probing results
• Morpheus attacks must be bespoke and lightning-fast (stochastic attacks)

• Lean into secure systems with durable security mechanisms
• Avoid non-durable mechanisms: software, resource sharing, leaky operations
• Time-Tested Cryptography, examples: RSA, AES, SHA-2
• Physical Isolation, examples: TPMs, Intel CAT

• Next-generation Morpheus-derived technology is being deployed
• Provides highly secure secret computation
• Based on cryptography and physical isolation based defenses
• Deployed in the Microsoft Azure and Amazon AWS clouds
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Morpheus’ Evolution and Beyond

Shibo Chen
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