Mozart: Designing for Software Maturity and the Next Paradigm for Chip Architectures

Karu Sankaralingam | UW-Madison and SimpleMachines
Tony Nowatzki | UCLA
Greg Wright, Poly Palamuttam, Jitu Khare, Vinay Gangadhar, Preyas Shah | SimpleMachines
Where does AI hardware/software stand today?

1. The computational diversity needed to support AI is increasing
2. The software user experience expectations is increasing
3. GPU software maturity* is unrivalled in completeness and hence allows near complete dominance among AI industry deployment and researchers.
4. This support for model diversity is fuelling these trends and increasing GPU adoption!

* NVIDIA DL stack - cuDNN, TensorRT, etc.
Is there a problem?

1. GPU chip utilization is quite low (10% of peak)
2. The software stack is turgidly tied to hand-tuned/auto-tuned libraries, resulting in ML systems getting caught in the rut.
3. Tail wagging the dog: Because only some styles of kernels achieve high performance on GPUs, ML practitioners are forced to create ridiculously large models to get new capability, rather than use better algorithms.
4. Simpler models exist but don’t run fast on existing HW or SW
 a. Lottery Hypothesis shows simpler models have the same/superior learning ability.
 b. Depth-wise separable convolutions have 10X fewer ops, but provide no speedups on today’s HW.

New chip architectures must have software maturity to challenge GPU dominance and serve as an alternative
Designing for Software Maturity

Goal: automated realization of the compiler and software stack utilizing program-synthesis vs human coding of high-perf libraries or non-automated/imperative compilers.

Benefits:
1. Allows day-0 SW maturity
2. Avoiding the pit-fall of building software after silicon arrives
3. Overcome the problem of SW dev cycle that far exceeds the HW dev cycle and cannot match the rate of application change
4. Allows co-design of the architecture to match needs of software, because software stack exposes what applications are doing

Other IRs and Compiler:
1. TVM, GLOW and other IRs solve part of the problem
2. Don’t get sufficiently down to object-code or sufficiently up the DL-stack to serve as turn-key deployment
Composable Computing: An Architecture Paradigm That Allows SW Maturity
Overview of CPU Execution

Source code has rich semantic information

Machine code

Compute resources devoted to overhead instead of app perf.
Composable Computing Paradigm

Source code has rich semantic information

Behavior Decomposition Compiler

Machine code

Composable Architecture
Application Compute: 85%
Overhead: 15%
Architecture Overview and Basic Tile

Control Behavior

Data-Gather

Compute

Synchronization

Control core

Instruction cache

Data cache

Maximum graph size 64 instructions

inputs/outputs per graph 6 inputs / 3 outputs

Stream Read

mem_addr stride access_size num_strides input_port

Stream Write

mem_addr stride access_size num_strides output_port

OCN Router

Cache

Stream Command Dispatcher

CGRA Spatial Fabric

Input Vector Port Interface

Output Vector Port Interface

Scratchpad Memory

Scratchpad Stream Engine

Memory Stream Engine

Recurrence Stream Engine
SoC Organization

PCIe Gen3 x16

HBM2 Memory

Tile 0
Tile 1
Tile 2
Tile 3
Tile 4
Tile 5
Tile 6
Tile 7
Tile 8
Tile 9
Tile 10
Tile 11
Tile 12
Tile 13
Tile 14
Tile 15
Avg L2 Prefetch performance: 108b/cyc = 1/5 cache-line/cyc

64 FU array running in two modes: (any arithmetic op)
1. non-SIMD mode: 64 64b ops/cycle
2. 8w SIMD mode: 512 8b ops/cycle
Mozart Chip, Board, System

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Node</td>
<td>TSMC 16FFC</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>1 GHz</td>
</tr>
<tr>
<td>Die Area</td>
<td>404 mm²</td>
</tr>
<tr>
<td>Package</td>
<td>45mmx45mm FCBGA</td>
</tr>
<tr>
<td>Peak INT8 performance</td>
<td>48 TOPS</td>
</tr>
<tr>
<td>DRAM Channels</td>
<td>2x HBM2</td>
</tr>
<tr>
<td>DRAM Bandwidth</td>
<td>512 GB/s</td>
</tr>
<tr>
<td>Host Interface</td>
<td>PCIe Gen3 x16</td>
</tr>
</tbody>
</table>
Deep Learning Performance

<table>
<thead>
<tr>
<th></th>
<th>Mozart @1GHz, 16nm, 75W PCIe Card</th>
<th>Bach (7nm) (projection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resnet</td>
<td>2.6X</td>
<td>6.6X</td>
</tr>
<tr>
<td>BERT</td>
<td>1.2X</td>
<td>3.1X</td>
</tr>
<tr>
<td>SSD-Resnet</td>
<td>1.0X</td>
<td>2.7X</td>
</tr>
<tr>
<td>RNN-T*</td>
<td>5.8X</td>
<td>15.1X</td>
</tr>
<tr>
<td>DLRM</td>
<td>0.3X</td>
<td>1.8X</td>
</tr>
</tbody>
</table>

* RNN-T includes many subtelities and optimizatin opportunities on batch-size in a sample

Relative Inf/Sec/Watt to NVIDIA A100
HW/SW Stack

- **Customer SW**
 - Data
 - Model (TF, ONNX, …)
 - C/C++, Python

- **Our SW**
 - Frontend AI engine & parser (TF, ONNX, …)
 - Behavior Compiler
 - Compute
 - Synchronize
 - Control
 - Data-Gather
 - Dynamic Runtime Engine

- **Our HW**
 - Composable Behavior Engine Hardware

High-level Attributes
- Programmability
- Algorithm independence

Physical attributes
- Physical scalability
- Modularity
- Efficiency

Software
- C/C++ and Python SDK
- Resnet, BERT, RNN-T, DLRM
- Universal AI/ML accelerator
if in("MRT", stages)
 @constraint(m, opposite_calc_l_used[v_i=v, l_i=l], sum(Mel[e_i, l_i] for e_i=e if Gve[v_i, e_i]) >= Mvl[v_i, l_i])
 @constraint(m, calc_l_used2[v_i=v, e_i=e, l_i=l; Gve[v_i, e_i]], Mel[e_i, l_i] <= Mvl[v_i, l_i])
 @constraint(m, oneEperL[l_i=l], sum(Mvl[v_i, l_i] for v_i=v) <= 1);
@constraint(m, source_mapping_p[v1_i=v, e_i=e, n_i=n; Gve[v1_i, e_i]], sum(Mel[e_i, l_i] for l_i=l if Hnl[n_i, l_i]) == Mn[v1_i, n_i] + PTen[e_i, n_i])
@constraint(m, dest_mapping_p[e_i=e, v2_i=v, n_i=n; Gev[e_i, v2_i]], sum(Mel[e_i, l_i] for l_i=l if Hln[l_i, n_i]) == Mn[v2_i, n_i] + PTen[e_i, n_i]);
function no_fu_router_loop(nf, rf, lf, ef, Hnlf, Hlrf, Hrlf, Hlnf, Melf)
 for l1_i=lf, l2_i=lf, e_i=ef
 for n_i=nf, r_i=rf
 if Hnlf[n_i, l1_i] && Hlrf[l1_i, r_i] && Hrlf[r_i, l2_i] && Hlnf[l2_i, n_i]
 @constraint(m, Melf[e_i, l1_i] + Melf[e_i, l2_i] <= 1)
 end
 end
 end
 no_fu_router_loop(1:0, 1:0, 1:0, 1:0, Hnl, Hlr, Hrl, Hln, Mel)
no_fu_router_loop(n, r, l, e, Hnl, Hlr, Hrl, Hln, Mel)
@constraint(m, incoming_links[e_i=e, r_i=r], sum(Mel[e_i, l_i] for l_i=l if Hlr[l_i, r_i]) == sum(Mel[e_i, l_i] for l_i=l if Hrl[r_i, l_i]));
@constraint(m, outgoing_links[e_i=e, r_i=r], sum(Mel[e_i, l_i] for l_i=l if Hlr[l_i, r_i]) <= 1);
DFG MATMUL

quant6x6x64(N0[6], W0[6], N1[6], W1[6], reset, Z -> out0, out1) {

reset_counter = Acc64(0x04000000, reset, reset);
reset_delayed = CmpEQ32x2(reset_counter, 0xffffffff04000001);

NW000 = QuantOp(N0[0], W0[0], Z);
NW001 = QuantOp(N0[1], W0[1], Z);
NW002 = QuantOp(N0[2], W0[2], Z);
NW003 = QuantOp(N0[3], W0[3], Z);
NW004 = QuantOp(N0[4], W0[4], Z);
NW005 = QuantOp(N0[5], W0[5], Z);

AS0 = SAdd32x2(NW000, NW001);
AS1 = SAdd32x2(NW002, NW003);
AS2 = SAdd32x2(NW004, NW005);
AT0 = SAdd32x2(AS0, AS1);
AU0 = SRedAcc32x2(AT0, AS2, reset_delayed);

NW100 = QuantOp(N0[0], W1[0], Z);
NW101 = QuantOp(N0[1], W1[1], Z);
NW102 = QuantOp(N0[2], W1[2], Z);
NW103 = QuantOp(N0[3], W1[3], Z);
NW104 = QuantOp(N0[4], W1[4], Z);
NW105 = QuantOp(N0[5], W1[5], Z);

AS3 = SAdd32x2(NW100, NW101);
AS4 = SAdd32x2(NW102, NW103);
AS5 = SAdd32x2(NW104, NW105);
AT1 = SAdd32x2(AS3, AS4);
AU1 = SRedAcc32x2(AT1, AS5, reset_delayed);

out0 = Concat32(AU0, AU1);
Software Capability

Complete deep-learning compiler including model characterization, graph optimization (fusion, splitting, rewriting), quantization (including quantization on non-linear operators like Gelu, Softmax, Erf), tensor-mapping to memory, backend optimized object code generation, and lightweight high-speed custom software runtime.

<table>
<thead>
<tr>
<th>Application</th>
<th>Original trained FP32 model</th>
<th>Optimized & quantized Mozart model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Ops</td>
<td>#uniq Ops</td>
</tr>
<tr>
<td>Resnet50</td>
<td>461</td>
<td>14</td>
</tr>
<tr>
<td>SSD-Resnet34</td>
<td>3320</td>
<td>46</td>
</tr>
<tr>
<td>BERT</td>
<td>757</td>
<td>24</td>
</tr>
<tr>
<td>SSD-MobileNet</td>
<td>4104</td>
<td>52</td>
</tr>
<tr>
<td>3D-Unet</td>
<td>587</td>
<td>19</td>
</tr>
<tr>
<td>DLRM</td>
<td>47</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application</th>
<th>Compiler runtime to transform FP32 model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resnet50</td>
<td>8 seconds</td>
</tr>
<tr>
<td>SSD-Resnet34</td>
<td>19 seconds</td>
</tr>
<tr>
<td>BERT</td>
<td>29 seconds</td>
</tr>
<tr>
<td>DLRM</td>
<td>3 seconds</td>
</tr>
</tbody>
</table>
1. Architecture **definition** is the key challenge for future chips and new architectures **must allow day-0 SW maturity**
 a. Can you bootstrap software for that architecture (before/while) defining it?
 b. Can you define an architecture that is correct and meets some figures-of-merit requirements?
2. Chip implementation of a defined architecture is deterministic
 a. But includes about 8 months of exposure: 4 months for “final” physical design, 4 months manufacture, 1.5 months bringup
3. Program Synthesis and Auto-generation of SW stacks is necessary for all future chips
4. Mozart and Composable Computing Paradigm is a compelling path forward
The Key Research Ideas

1) Spatial compiler that was retargetable to “any” spatial hardware. PLDI 2013 paper. Distinguished Paper award, CACM Research Highlights Nomination. “A General Constraint-centric Scheduling Framework for Spatial Architectures”

2) Five behaviors that capture hardware and software interactions. HPCA 2016 paper. IEEE Micro Top Picks. “Pushing the Limits of Accelerator Efficiency While Retaining General-Purpose Programmability”

Thank You