
Mozart: Designing for Software Maturity and the

Next Paradigm for Chip Architectures

Karu Sankaralingam | UW-Madison and SimpleMachines

Tony Nowatzki | UCLA

Greg Wright, Poly Palamuttam, Jitu Khare, Vinay Gangadhar, Preyas Shah | SimpleMachines

Where does AI hardware/software stand today?

LSTMCNN
Time in

months

Transformer Graph Neural Net ???

Users

Algorithm

1. The computational diversity needed to support AI is increasing

2. The software user experience expectations is increasing

3. GPU software maturity* is unrivalled in completeness and hence allows near complete

dominance among AI industry deployment and researchers.

4. This support for model diversity is fuelling these trends and increasing GPU adoption!

* NVIDIA DL stack - cuDNN, TensorRT, etc.

Is there a problem?

New chip architectures must have
software maturity to challenge GPU
dominance and serve as an alternative

1. GPU chip utilization is quite low (10% of peak)

2. The software stack is turgidly tied to hand-tuned/auto-tuned libraries, resulting in ML

systems getting caught in the rut.

3. Tail wagging the dog: Because only some styles of kernels achieve high performance

on GPUs, ML practitioners are forced to create ridiculously large models to get new

capability, rather than use better algorithms.

4. Simpler models exist but don’t run fast on existing HW or SW
a. Lottery Hypothesis shows simpler models have the same/superior learning ability.

b. Depth-wise separable convolutions have 10X fewer ops, but provide no speedups

on today’s HW.

Designing for Software Maturity

Goal: automated realization of the compiler and software stack utilizing program-

synthesis vs human coding of high-perf libraries or non-automated/imperative compilers.

Benefits:

1. Allows day-0 SW maturity

2. Avoiding the pit-fall of building software after silicon arrives

3. Overcome the problem of SW dev cycle that far exceeds the HW dev cycle and cannot

match the rate of application change

4. Allows co-design of the architecture to match needs of software, because software

stack exposes what applications are doing

Other IRs and Compiler:

1. TVM, GLOW and other IRs solve part of the problem

2. Don’t get sufficiently down to object-code or sufficiently up the DL-

stack to serve as turn-key deployment

Composable Computing: An Architecture Paradigm
That Allows SW Maturity

Compute resources devoted to

overhead instead of app perf.

Source code has rich

semantic information

Machine

code

Overview of CPU Execution

Source code

has rich

semantic

information

Behavior

Decomposition

Compiler

Machine

code

Composable Architecture

Application Compute: 85%

Overhead: 15%

Data Gather

Compute

Sync

Control

Composable Computing Paradigm

Architecture Overview and Basic Tile

Maximum graph size 64 instructions

inputs/outputs per graph 6 inputs / 3 outputs

Stream Read

[mem_addr] [stride]

[access_size] [num_strides]

[input_port]

Stream Write

[mem_addr] [stride]

[access_size] [num_strides]

[output_port]

SoC Organization

PCIe Gen3 x16

HBM2 Memory HBM2 Memory

T
ile

 0

T
ile

 1

T
ile

 2

T
ile

 8

T
ile

 9

T
ile

 1
0

T
ile

 3

T
ile

 1
1

T
ile

 4

T
ile

 5

T
ile

 6

T
ile

 1
2

T
ile

 1
3

T
ile

 1
4

T
ile

 7

T
ile

 1
5

T
ile

 0

T
ile

 1

T
ile

 2

T
ile

 8

T
ile

 9

T
ile

 1
0

T
ile

 3

T
ile

 1
1

T
ile

 4

T
ile

 5

T
ile

 6

T
ile

 1
2

T
ile

 1
3

T
ile

 1
4

T
ile

 7

T
ile

 1
5

T
ile

 0

T
ile

 1

T
ile

 2

T
ile

 8

T
ile

 9

T
ile

 1
0

T
ile

 3

T
ile

 1
1

T
ile

 4

T
ile

 5

T
ile

 6

T
ile

 1
2

T
ile

 1
3

T
ile

 1
4

T
ile

 7

T
ile

 1
5

T
ile

 0

T
ile

 1

T
ile

 2

T
ile

 8

T
ile

 9

T
ile

 1
0

T
ile

 3

T
ile

 1
1

T
ile

 4

T
ile

 5

T
ile

 6

T
ile

 1
2

T
ile

 1
3

T
ile

 1
4

T
ile

 7

T
ile

 1
5

Avg L2 Prefetch performance:

108b/cyc = 1/5 cache-line/cyc

10

64 FU array running in two modes: (any arithmetic op)

1. non-SIMD mode: 64 64b ops/cycle

2. 8w SIMD mode: 512 8b ops/cycle

[Scalar Constants]

2 64b read per cycle

[L2 cache 64KB]

2 512b reads/cycle

2 512b writes/cycle

[Scratchpad 32KB]

2 512b reads/cycle

Core 0Core 1
(Prefetch Core)

HBM

Partitions

prefetch ld cmds

1 every 3 cycles

Architecture Specification: Performance View

Mozart Chip, Board, System Technology Node TSMC 16FFC

Operating Frequency 1 GHz

Die Area 404 mm2

Package 45mmx45mm FCBGA

Peak INT8

performance

48 TOPS

DRAM Channels 2x HBM2

DRAM Bandwidth 512 GB/s

Host Interface PCIe Gen3 x16

Deep Learning Performance

Relative Inf/Sec/Watt to NVIDIA A100

Mozart

@1GHz, 16nm, 75W PCIe Card

Bach (7nm)

(projection)

Resnet 2.6X 6.6X

BERT 1.2X 3.1X

SSD-Resnet 1.0X 2.7X

RNN-T* 5.8X 15.1X

DLRM 0.3X 1.8X

* RNN-T includes many subtelities and optimizatin opportunities on batch-size in a sample

Our
SW

Our
HW

Data Model (TF, ONNX, …) C/C++, Python

Frontend AI engine & parser (TF, ONNX, ..)

Behavior Compiler

Dynamic Runtime Engine

Composable Behavior Engine Hardware

Compute Synchronize Control Data-Gather

High-level
Attributes

Programmability

Algorithm independence

Physical attributes

Physical scalability

Modularity

Efficiency

Software

C/C++ and Python SDK
Resnet, BERT, RNN-T,
DLRM
Universal AI/ML
accelerator

HW/SW Stack

Customer
SW

Program Synthesis and SW Maturity in Mozart

Confidential 15

if in("MRT", stages)

@constraint(m, opposite_calc_l_used[v_i=v, l_i=l], sum(Mel[e_i, l_i]

for e_i=e if Gve[v_i, e_i]) >= Mvl[v_i, l_i])

@constraint(m, calc_l_used2[v_i=v, e_i=e, l_i=l; Gve[v_i, e_i]],

Mel[e_i, l_i] <= Mvl[v_i, l_i])

@constraint(m, oneEperL[l_i=l], sum(Mvl[v_i, l_i] for v_i=v) <= 1);

@constraint(m, source_mapping_p[v1_i=v, e_i=e, n_i=n; Gve[v1_i, e_i]],

sum(Mel[e_i, l_i] for l_i=l if Hnl[n_i, l_i]) == Mn[v1_i, n_i] + PTen[e_i, n_i])

@constraint(m, dest_mapping_p[e_i=e, v2_i=v, n_i=n; Gev[e_i, v2_i]],

sum(Mel[e_i, l_i] for l_i=l if Hln[l_i, n_i]) == Mn[v2_i, n_i] + PTen[e_i, n_i]);

function no_fu_router_loop(nf, rf, lf, ef, Hnlf, Hlrf, Hrlf, Hlnf, Melf)

for l1_i=lf, l2_i=lf, e_i=ef

for n_i=nf, r_i=rf

if Hnlf[n_i, l1_i] && Hlrf[l1_i, r_i] && Hrlf[r_i, l2_i] && Hlnf[l2_i, n_i]

@constraint(m, Melf[e_i, l1_i] + Melf[e_i, l2_i] <= 1)

end

break

end

end

end

no_fu_router_loop(1:0, 1:0, 1:0, 1:0, Hnl, Hlr, Hrl, Hln, Mel)

no_fu_router_loop(n, r, l, e, Hnl, Hlr, Hrl, Hln, Mel)

@constraint(m, incoming_links[e_i=e, r_i=r],

sum(Mel[e_i, l_i] for l_i=l if Hlr[l_i, r_i]) == sum(Mel[e_i, l_i]

for l_i=l if Hrl[r_i, l_i]));

@constraint(m, outgoing_links[e_i=e, r_i=r],

sum(Mel[e_i, l_i] for l_i=l if Hlr[l_i, r_i]) <= 1);

PLDI-13+HPCA-16+ISCA-17Compiler Flow

DFG MATMUL

quant6x6x64(N0[6], W0[6], N1[6], W1[6], reset, Z -> out0, out1) {

reset_counter = Acc64(0x04000000, reset, reset);

reset_delayed = CmpEQ32x2(reset_counter, 0xffffffff04000001);

NW000 = QuantOp(N0[0], W0[0], Z);

NW001 = QuantOp(N0[1], W0[1], Z);

NW002 = QuantOp(N0[2], W0[2], Z);

NW003 = QuantOp(N0[3], W0[3], Z);

NW004 = QuantOp(N0[4], W0[4], Z);

NW005 = QuantOp(N0[5], W0[5], Z);

AS0 = SAdd32x2(NW000, NW001);

AS1 = SAdd32x2(NW002, NW003);

AS2 = SAdd32x2(NW004, NW005);

AT0 = SAdd32x2(AS0, AS1);

AU0 = SRedAcc32x2(AT0, AS2, reset_delayed);

NW100 = QuantOp(N0[0], W1[0], Z);

NW101 = QuantOp(N0[1], W1[1], Z);

NW102 = QuantOp(N0[2], W1[2], Z);

NW103 = QuantOp(N0[3], W1[3], Z);

NW104 = QuantOp(N0[4], W1[4], Z);

NW105 = QuantOp(N0[5], W1[5], Z);

AS3 = SAdd32x2(NW100, NW101);

AS4 = SAdd32x2(NW102, NW103);

AS5 = SAdd32x2(NW104, NW105);

AT1 = SAdd32x2(AS3, AS4);

AU1 = SRedAcc32x2(AT1, AS5, reset_delayed);

out0 = Concat32(AU0, AU1);

Application Compiler runtime to transform

FP32 model

Resnet50 8 seconds

SSD-Resnet34 19 seconds

BERT 29 seconds

DLRM 3 seconds

Software Capability

Complete deep-learning compiler including model characterization, graph optimization (fusion, splitting,
rewriting), quantization (including quantization on non-linear operators like Gelu, Softmax, Erf), tensor-mapping
to memory, backend optimized object code generation, and lightweight high-speed custom software runtime.

Application Original trained FP32

model

Optimized & quantized

Mozart model

Total Ops #uniq Ops Total Ops #uniq Ops

Resnet50 461 14 84 12

SSD-Resnet34 3320 46 111 10

BERT 757 24 322 17

SSD-Mobilenet 4104 52 91 7

3D-Unet 587 19 100 15

DLRM 47 10 19 11

Day-0 Software Maturity is Necessary for all Future Chips

1. Architecture definition is the key challenge for future chips and new architectures must

allow day-0 SW maturity

a. Can you bootstrap software for that architecture (before/while) defining it?

b. Can you define an architecture that is correct and meets some figures-of-merit

requirements?

2. Chip implementation of a defined architecture is deterministic

a. But includes about 8 months of exposure: 4 months for “final” physical design, 4
months manufacture, 1.5 months bringup

3. Program Synthesis and Auto-generation of SW stacks is necessary for all future chips

4. Mozart and Composable Computing Paradigm is a compelling path forward

The Key Research Ideas

1) Spatial compiler that was retargetable to “any” spatial hardware. PLDI 2013 paper.
Distinguished Paper award, CACM Research Highlights Nomination. “A General Constraint-

centric Scheduling Framework for Spatial Architectures”
2) Five behaviors that capture hardware and software interactions. HPCA 2016 paper. IEEE

Micro Top Picks. “Pushing the Limits of Accelerator Efficiency While Retaining General-

Purpose Programmability”
3) Hybrid Von-Neuman Dataflow and Stream-Dataflow: Practical blend of above two ideas with

a concrete arch, microarchitecture and small enough design. ISCA-2015, ISCA-2017. Top

Picks, CACM Research Highlights.

“Heterogeneous Von Neumann/Dataflow Microprocessors”
“Stream-Dataflow Acceleration”

http://www.cs.wisc.edu/vertical/papers/2013/pldi13-ilp-scheduler.pdf
http://research.cs.wisc.edu/vertical/papers/2016/hpca16-lssd.pdf
http://research.cs.wisc.edu/vertical/papers/2015/isca15-seed.pdf
http://research.cs.wisc.edu/vertical/papers/2017/isca17-stream-dataflow.pdf

Thank You

