

## NVIDIA DATA CENTER PROCESSING UNIT (DPU) ARCHITECTURE

Idan Burstein, DPU Principal Architect



## DATA CENTER IS THE NEW UNIT OF COMPUTING





**DPU-Accelerated** Data Center Infrastructure



## NAIVELY MOVING WORKLOADS TO NIC CPUS DOESN'T WORK

#### Traditional Server - 30 Total Cores



Shift CPU Workload to DPU Cores

Server with Non-Accelerated DPU Offload - 36 Total Cores



18 DPU Cores Replace 12 Server CPU Cores – No Gain in Performance or Efficiency Not compatible for higher bandwidth without requiring significant system modification

## **DPU MUST INCLUDE HARDWARE ACCELERATION**



DPU Accelerators and 8 Arm Cores Replace 20 to 120 CPU Cores – HUGE Efficiency Gain

Software-defined Storage



Arm Cores Run Control Plane or Security Workloads Requiring Domain Isolation



## NVIDIA DPU ROADMAP Exponential Growth in Data Center Infrastructure Processing





**BlueField-4** 64B Transistors 160 SPECint\* 1000 TOPS 800 Gbps

2024

5



### NVIDIA BLUEFIELD-3 DPU First 400Gb/s Data Processing Unit

22 Billion Transistors

400Gb/s Ethernet & InfiniBand Connectivity (1-4 Ports)

PCIe Switch Gen 3/4/5 x32+x4

400Gb/s Crypto / Security Acceleration

2x370M PPS, 2x40M PPS at scale of millions of flows

18M IOP/s Elastic Block Storage

300 Equivalent x86 Cores

16C A78 ARM 42 SPECINT2k17-rate

128b DDR5-5600

| DATA PATH ACC | CELERATOR |
|---------------|-----------|
| CONNECTX-7    |           |
| PCIe GEN 5.0  |           |
|               |           |
|               |           |
|               |           |
|               |           |
|               | 1 IT M    |
|               |           |



### NVIDIA DOCA Enabling Broad BlueField Partner Ecosystem

Software Development Framework for BlueField DPUs

Software Compatibility for Generations of BlueField DPUs

Offload, Accelerate, and Isolate Infrastructure Processing

Support for Hyperscale, Enterprise, Supercomputing and Hyperconverged Infrastructure

DOCA is for DPUs what CUDA is for GPUs

| PLATFORM<br>INFRASTRUCTURE  | l |
|-----------------------------|---|
| CANONICAL                   | l |
| 🔍 Red Hat                   | l |
| <b>vm</b> ware <sup>®</sup> | l |
|                             |   |
|                             |   |
|                             |   |
| Orchestration               |   |
| Orchestration<br>Management |   |



## BLUEFIELD-3 PROGRAMMABLE ENGINES

| ARM                     | 16 Arm A78 cores                                                                                                      |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
|                         | Fully programmable OS<br>Apps/services, service chaining<br>Control Path / Slow Path<br>Memory to Memory Accelerators |  |
| Datapath<br>Accelerator | 16 cores, 256 threads<br>Programmability through DOCA<br>Heavy multi-threading application<br>acceleration            |  |

| ASAP <sup>2</sup> | Programmable packet processor flow pipeline |  |
|-------------------|---------------------------------------------|--|
|                   | Flow table based                            |  |
|                   | Data Path                                   |  |



DOCA

orm

#### Infrastructure Applications

Containers

#### DOCA Framework

**Open APIs and Services** 

#### NVIDIA BlueField DPU BlueField Operating System



## NVIDIA DPU SYSTEM ARCHITECTURE

#### Server Class CPU subsystem

Data center operating system control plane

Isolated memory subsystem optimized for networking

#### NIC subsystem

Isolated boot domain, real time OS

Accelerating data path at line rate

#### PCle subsystem

Flexible EP/RP assignment, PCIe switching, NTB, p2p communication, emulated devices, optimized for IO

#### Data acceleration

Accelerating ARM workload





## DPU ACCELERATED SWITCHING AND PACKET PROCESSING Programmable Data Path | Software-Defined Orchestration

#### Accelerated

- Virtio-Net/Other Emulation
- QoS & scheduling
- Telemetry and statistics  $\checkmark$ 
  - Micro Segmentation / IPS / IDS / WAF
  - Encryption (Ipsec / MACsec)



 $\checkmark$ 

 $\checkmark$ 

Tunneling (VXLAN / GRE)





- Routing
- ACL

### Software Defined eSwitch management **Connection Establishment Key Association**

Monitoring & Stats

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

BlueField



≥ NVIDIA.

### **100G OVS-DPDK - VXLAN & CONNECTION TRACKING** Faster Performance | Lower CAPEX





### BLUEFIELD-2 100G IPSEC TCP PERFORMANCE Faster Performance | Lower CAPEX



- BlueField-2 P-series 100GbE Single port
- Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz
- Host OS: RHEL 8.3 (Ootpa)



- Each SW core does : 21.2 / 14.2 = ~1.5G
- To reach ~90G in SW we need ~60 cores
- To reach ~90G w/ DPU we need ~10 cores

- SW cores do : 21.2 / 14.2 = ~1.5G
- With DPU SW cores do : 88.9 / 10.3 = -9G-
- Core performance increased by magnitude 6X



## DPU ACCELERATED STORAGE PROCESSING

Programable Data Path | Software Defined Orchestration



≥ NVIDIA.

## STORAGE NVME-OF PERFORMANCE Latency Determinism | IOPs Efficiency



RoCE Maintains the latency determinism of local SSD access

#### RoCE IO Processing @ 4KB is x4-5 Lower

壑 NVIDIA.



## **DPU ENABLES CLOUD-NATIVE SUPERCOMPUTING**

Multi-Tenancy with Zero-Trust Security

Collective offload with UCC accelerator

Smart MPI progression

User-defined algorithms

1.4X higher application performance

## **IMPROVING NON-BLOCKING MPI PERFORMANCE** 44% Faster for MPI iAlltoall, 36% Faster for MPI iAllgather









# HIGHER APPLICATION PERFORMANCE

# Up to 35% App Performance, MPI Collectives Offload



32 servers, Dual Socket Intel® Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz (32 processes per node), NVIDIA BlueField-2 HDR100 DPUs and ConnectX-6 HDR100 adapters, NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand, 256GB DDR4 2400MHz RDIMMs memory and 1TB 7.2K RPM SATA 2.5" hard drive per node.

Courtesy of Ohio State University MVAPICH team and X-ScaleSolutions



## DPU ISOLATES GEFORCE NOW CLOUD GAMING Isolated and Secured Infrastructure | More Concurrent Users

#### **GeForce NOW Pod**



| Game                       | Graphics<br>Driver | Video     |  |  |
|----------------------------|--------------------|-----------|--|--|
| SDDC                       | Security           | Telemetry |  |  |
| NAT   DDOS   Reverse Proxy |                    |           |  |  |
| Ethernet NIC               |                    |           |  |  |



📀 NVIDIA.

#### Traditional AI-on-5G Platforms

Heterogeneous, Mixed Programming Models



## DPU ENABLES FULLY INLINE 5G NETWORK PROCESSING Offload, Isolate, Accelerate 5G Infra

Accelerate 5G or AI - Fully fungible - Fully programmable

Support for CUDA, DOCA - Toolchains, SDKs, Libraries

Secure, Isolated, Accelerated data processing

No need to move data back and forth from accelerators to host memory

Domain specific acceleration for 5G, AI, Network Security

Independent DPU time domain (5T for 5G)

Fully optimized data path

#### DPU-GPU Accelerated 5G

Homogeneous, Common Programming





.....

## SUMMARY

#### NVIDIA DPU Enables the Data Center as the New Unit of Computing

- The CPU can no longer do it all
- Must offload & isolate server infrastructure tasks to a DPU
- Effective DPU must offer hardware acceleration and security isolation
- To enable such effective DPU, need to develop broad software eco-system to utilize hardware acceleration across variety of disciplines (e.g. HPC, AI/ML, Storage, Networking, Security) - DOCA
- NVIDIA DPU & DOCA is a computing platform with rich stack optimized ideal for AI, bare metal cloud, cloud supercomputing, storage, gaming, 5G wireless, and more
- NVIDIA is committed to line rate performance every generation.

