Sapphire Rapids

Arijit Biswas Intel Senior Principal Engineer

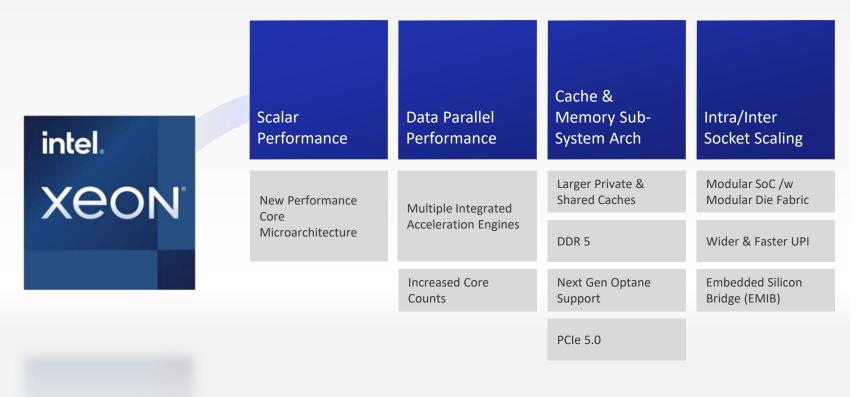
Sapphire Rapids

Next-Gen Intel Xeon Scalable Processor

New Standard for Data Center Architecture

Designed for Microservices & AI Workloads

Pioneering Advanced Memory & IO Transitions


Node Performance

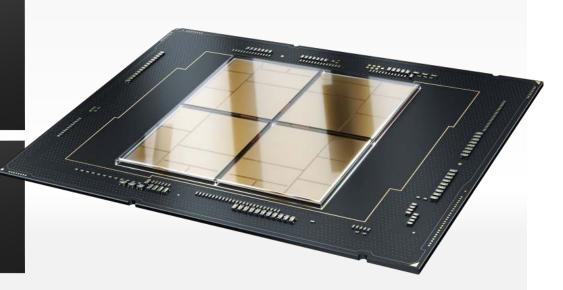
Data Center Performance

Node Performance

intel.	Fast VM Migration	Low Jitter Architecture	Next Gen Quality of Service Capabilities Broad WL/Usage Support and Optimizations	
Xeon	Better Telemetry	Consistent Caching & Mem Latency Inter-Processor Interrupt Virt.	Next Gen Optane Support CXL 1.1	Integrated WL Accelerators
	Consolidation & Orchestration	Performance Consistency	Elasticity & Efficient Data Center Utilization	Infrastructure & Framework Overhead

Data Center Performance

Delivers a scalable, balanced architecture leveraging existing software paradigms for monolithic CPUs via a modular architecture

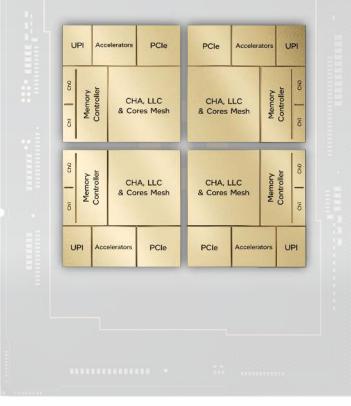


Sapphire Rapids Multiple Tiles, Single CPU

Every thread has full access to all resources on all tiles

Cache, Memory, IO...

Provides consistent low latency & high cross-section BW across the entire SoC



Sapphire Rapids

Key Building Blocks

Compute I Seamless Integr		Cores	Acceleration Engines	
I/O IP	CXL1.1	PCle Gen 5	UPI 2.0	
Memory IP	DDR 5	Optane	НВМ	

Performance Core

Built for Data Center

Major microarchitecture and IPC improvement

Improved support for large code/data footprint

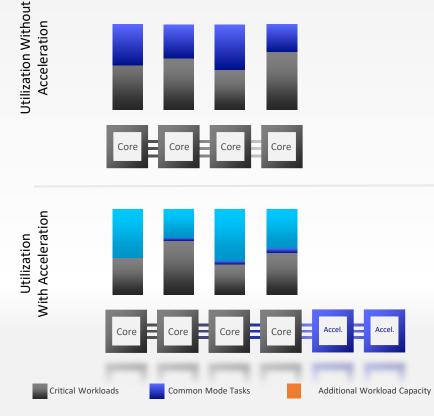
Consistent performance for multi-tenant usages

Autonomous/Fast PM for high freq @ low jitter

	I-TLB + I-Cache Predict											
MSR	MSROM Decode							µop Cache				
	µop Queue											
	Allocate / Rename / Move Elimination / Zero Idiom											
	Port 00	Port 01	Port 05	Port 06	Port 10	Port 04	Port 09	Port 02	Port 08	Port 03	Port 07	Port 11
L	ALU LEA	ALU LEA	ALU LEA	ALU LEA	ALU LEA	-	vre	AGU	AGU	AGU	AGU	AGU
	Shift JMP	Mul iDIV	MulHi	Shift JMP		Store Data		Load	STA	Load	STA	Load
	FMA	FMA	FMAsp				48KB	Data (Cache			
VEC	ALU Shift fpDIV	ALU Shift Shuffle	ALU AMX Shuffle	2MB ML Cache								
		FADD	FADD									

Performance		
Core	AI	Intel [®] Advanced Matrix Extensions - AMX Tiled matrix operations for inference & training acceleration
Architactura	Attached Device	Accelerator interfacing Architecture - AiA Efficient dispatch, signaling & synchronization from user level
Architecture Improvements for DC Workloads & Usages	HFNI	Half- Precision Float New Instructions Support for FP16 - higher throughput lower precision
	Cache Management	CLDEMOTE Proactive placement of cache contents

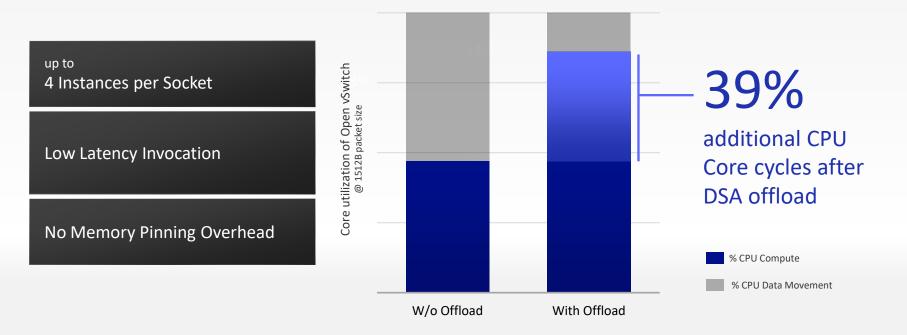
Sapphire Rapids


Acceleration Engines

Increasing effectiveness of cores, by enabling offload of common mode tasks via seamlessly integrated acceleration engines

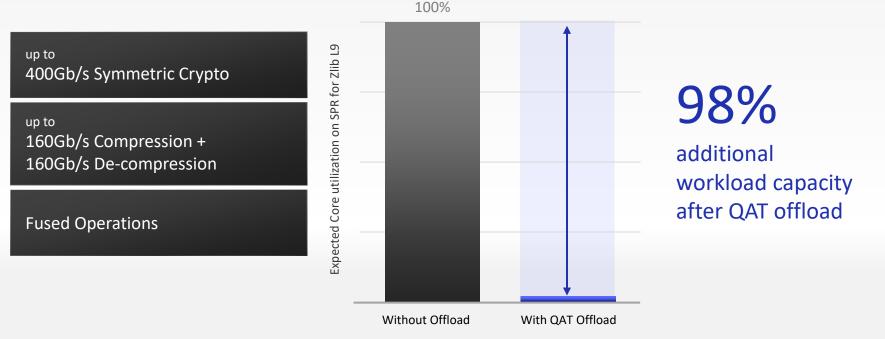
Native Dispatch, Signaling & Synchronization from User Space Accelerator interfacing Architecture

Coherent, Shared Memory Space Between Cores & Acceleration Engines


Concurrently shareable Processes, containers and VMs

Intel[®] Data Streaming Acceleration Engine

Optimizing streaming data movement and transformation operations


Results have been estimated or simulated based on testing on pre-production hardware and software. For workloads and configurations visit <u>www.intel.com/ArchDay21claims</u>. Results may vary

Intel[®] Quick Assist Technology

Acceleration Engine

Accelerating Cryptography and Data De/Compression

Results have been estimated or simulated. Sapphire Rapids estimation based on architecture models and baseline testing with Ice Lake and Intel QAT. For workloads and configurations visit <u>www.intel.com/ArchDay21claims</u>. Results may vary.



Intel[®] Dynamic Load Balancer

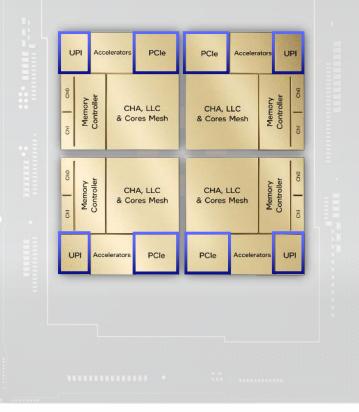
Acceleration Engine

Efficient Load Balancing across CPU Cores

400M Load Balancing Decisions per Second Offloads Software Queue Management Dynamic, flow aware load balancing & reordering Priority Queuing (up to 8 levels) Dynamic, power aware sizing of applications

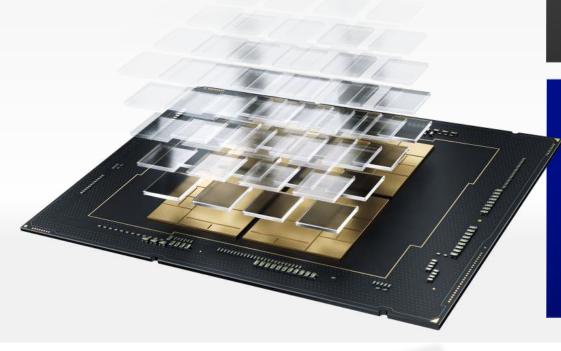
Sapphire Rapids I/O Advancements

Introducing Compute eXpress Link (CXL) 1.1


Accelerator and memory expansion in datacenter

Expanded device performance via PCIe 5.0 & connectivity Improved DDIO & QoS capabilities

Improved Multi-Socket scaling via Intel Ultra Path Interconnect (UPI) 2.0


Up to 4 x24 UPI links operating @ 16 GT/s

New 8S-4UPI performance optimized topology

Sapphire Rapids IO - Virtualization

Intel[®] Shared Virtual Memory (SVM) Enabling devices and IA cores to access shared data in CPU virtual address space

Consistent across host app. and offloaded tasks

Avoids memory pinning and copying overheads

Integrated & discrete, bare-metal & VM instances

Intel[®] Scalable IO Virtualization (S-IOV)

Hardware acceleration for comms between VMs/containers and PCIe devices

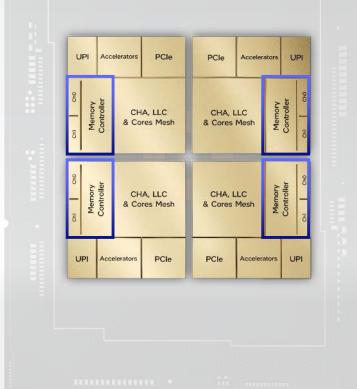
Scalable sharing and direct access to accelerators across 1000s of VMs/containers

Higher Perf than SW only device scaling, More scalable than SR-IOV

Supports integrated & discrete devices

Sapphire Rapids Memory and Last Level Cache

Increased Shared Last Level Cache (LLC) Up to >100 MB LLC shared across ALL cores

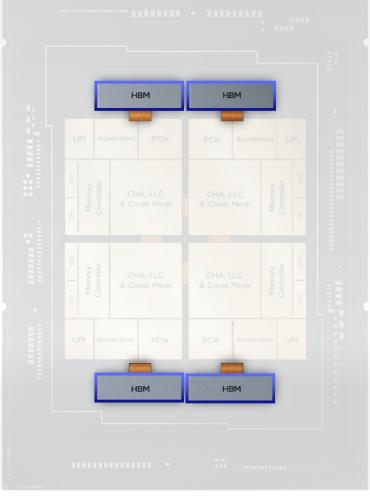

Increased bandwidth, security & reliability via DDR 5 Memory

4 memory controllers supporting 8 channels

Integrated memory encryption engine

Improved RAS

Intel Optane[™] Persistent Memory 300 Series



Significantly Higher Memory Bandwidth vs. baseline Xeon-SP with 8 channels of DDR 5

Increased capacity and Bandwidth some usages can eliminate need for DDR entirely

2 Modes

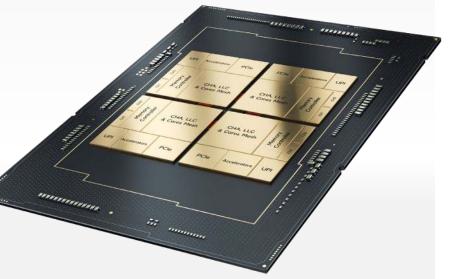
Sapphire Rapids - Architected for AI

AI has become ubiquitous across usages – AI performance required in all tiers of computing

2048 Goal Enable efficient usage of AI across all services deployed on elastic general-purpose tier by delivering many times more AI Ops/Cycle per core @ 100% utilization performance and lower CPU utilization 1024 int8 with int32 accumulation For Deep Learning Datatypes Bfloat16 with IEEE SP accumulation Acceleration at Full Intel Arch. programmability the ISA Level 256 Low Latency 64 AVX-512 (2xFMA) INT8 Available and integrated with AVX-512 (2xFMA) FP32 AMX (TMUL) BF16 AMX (TMUL) INT8 industry-relevant frameworks & libraries Results have been simulated. For workloads and configurations visit www.intel.com/ArchDay21claims . Results may vary

Sapphire Rapids - Built for elastic computing models - microservices

>80% of new cloud-native and SaaS applications are expected to be built as microservices


Goal Enable higher throughput while meeting latency requirements and reducing infrastructure overhead for execution, monitoring and orchestration thousands of microservices		Microservices Performance		+69%	Throughpu
Improved Performance and Quality of Service	Runtime Languages - lower latency for Runtime Languages AiA ISA's - efficient worker threads, signaling and synch.	1.0	+ 24%		Throughput per Core under Latency SLA of p99 <30ms
Reduced Infrastructure Overhead	Kubernetes – enhanced for scaling, placement and policies Advanced Telemetry - easier analysis & optimization				ency SLA of p99 <30
Better Distributed Communication	Improved latency of Remote procedure calls and service-mesh QAT, DSA etc optimized networking and data movement		Icelake Server en simulated. For workl ArchDay21claims. Res	Sapphire Rapids oads and configurations v ults may vary	¢.

New Standard in Data Center Architecture								
Multi Tile SoC for Scalability	Physically Tiled, Logically Monolithic						General Purpose & Dedicated Acceleration Engines	5
Designed for Microservices and AI Workloads								
Performance Core Architecture								
Pioneering Advanced Memory & IO Transitions								
DDR 5 & HBM	PCle 5.0		Enhanced Virtualization Capabilities					

Sapphire Rapids

Biggest Leap in Data Center Capabilities in over a Decade

Inte