







## Alder Lake

Reinventing Multi Core Architecture

#### All-New Core Design

Built for Performance Hybrid

#### Single, Scalable SoC Architecture

All Client Segments – 9W to 125W – built on Intel 7 process

#### Intel Thread Director



### Alder Lake Performance Hybrid



- Single Thread general purpose compute still critical
  - Low latency high IPC ST and serial segments
- Support vector and ML instructions
- Drives size and power
- Increase in Parallel apps (MT)
  - Machine Learning/Al
  - Concurrent usage
  - Focus on user experience

Shift from multi-ST-performance cores → Performance Hybrid



## Alder Lake Performance Hybrid



Performance Hybrid → E-cores deliver throughput P-Core deliver Performance





## Alder Lake

Reinventing Multi Core Architecture

#### All-New Core Design

Built for Performance Hybrid

#### Single, Scalable SoC Architecture

All Client Segments – 9W to 125W – built on Intel 7 process

#### Intel Thread Director











## E-Core To P-Core Performance Efficiency





P-Core delivers higher Performance on single and lightly threaded scalable apps.

E-Core provide higher computational density under given physical constraints

Note: Charts are for illustrative purposes only





# Alder Lake

Reinventing Multi Core Architecture

#### All-New Core Design

Built for Performance Hybrid

#### Single, Scalable SoC Architecture

All Client Segments – 9W to 125W – built on Intel 7 process

#### Intel Thread Director



### Scalable Client Architecture

Ultra Mobile

**BGA Type4 HDI** 28.5 x 19 x 1.1 mm

Mobile

**BGA Type3** 50 x 25 x 1.3 mm

Desktop

LGA 1700 Socket









# Alder Lake I/O

Leading the industry transition to PCIe Gen5

Up to 2X bandwidth vs. Gen4 Up to 64GB/s with x16 lanes Support for all four major memory technologies

Dynamic voltage-frequency scaling Enhanced overclocking support







#### Ultra Mobile

#### Mobile

#### Desktop

All cores are exposed to OS Logical processors accessible

Hybrid topology enumerated No hard coded information Same OS and SW for all builds HW support and management







Building Blocks



P-Core



























# Alder Lake

Reinventing Multi Core Architecture

#### All-New Core Design

Built for Performance Hybrid

#### Single, Scalable SoC Architecture

All Client Segments – 9W to 125W – built on Intel 7 process

#### Intel Thread Director



Intel Thread Director

Intelligence built directly into the core

#### Monitors the runtime instruction mix

of each thread and as well as the state of each core – with nanosecond precisionv

#### Provides runtime feedback to the OS

to make the optimal scheduling decision for any workload or workflow

#### Dynamically adapts guidance

based on the thermal design point, operating conditions, and power settings – without any user input

#### Power and energy management

Adjust Voltage and frequency to meet user experience while optimizing power, thermal and energy consumption





## Intel **Thread Director -** Telemetry

New Machine Learning based thread telemetry of core-to-core perf.

- Tunned and extensively validated
- IPC gain of P-core vs. E-core → attach class to thread architectural context

#### P-Core to E-Core IPC ratio





## Intel Thread Director - Architecture

- HW periodically writes a feedback table (EHFI)
  - Function of aggregated load and physics
- OS scheduler selects the best core allocation for the SW thread runtime properties and class
  - Most performing core-or-
  - Most energy efficient core

0

P-Core to E-Core IPC ratio

 Communicates Energy Performance Preference

**Applications** 



performance

O → Hint do not schedule



Core IPC ratio

1.25

# Intel Thread Director – Scheduling example

EHFI table enumerate core properties per class for the OS

2 Background threads of any class directed to energy efficient core





# Intel Thread Director – Scheduling example

EHFI table enumerate core properties per class for the OS

Background threads of any class directed to energy efficient core

Priority threads are directed to performance cores





## Intel Thread Director - Scheduling example

- EHFI table enumerate core properties per class for the OS
  - 2 Background threads of any class directed to energy efficient core
  - Priority threads are directed to performance cores
    - In case of contention on priority core, lower class will be moved for higher class





## Intel **Thread Director -** Value

Performance with Intel Thread Director enabled vs. disabled

- Baseline is Alder Lake without Thread Director.
- Placement of the right thread on the right core
- Impact real life application mix
  - Integer, Vector and Al
  - Background operations



<sup>\*</sup> Note: Chart is for illustrative purposes and not at scale



## Intel **Thread Director –** Power and energy

Alder Lake power management rearchitected - hybrid aware

- Core properties and topology
- Impacted by and controls thread scheduling

#### Example

Each core type may run a mix of thread priorities

- Background threads → low frequency
- Priority threads → high frequency
- Frequency is balanced between core types
- Adjusted to compute load

On power constrained system  $\rightarrow$  power balancing

Power budget distribution optimized







## Alder Lake

Reinventing Multi Core Architecture

#### All-New Core Design

Built for Performance Hybrid

#### Single, Scalable SoC Architecture

All Client Segments – 9W to 125W – built on Intel 7 process

#### Intel Thread Director





Thank you!





Fig. 6



A powerful element, a university, a turn.

bit.ly/2VEW6Dt

